Pathogenesis of growth failure and partial reversal with gene therapy in murine and canine Glycogen Storage Disease type Ia.

Abstract

Glycogen Storage Disease type Ia (GSD-Ia) in humans frequently causes delayed bone maturation, decrease in final adult height, and decreased growth velocity. This study evaluates the pathogenesis of growth failure and the effect of gene therapy on growth in GSD-Ia affected dogs and mice. Here we found that homozygous G6pase (-/-) mice with GSD-Ia have normal growth hormone (GH) levels in response to hypoglycemia, decreased insulin-like growth factor (IGF) 1 levels, and attenuated weight gain following administration of GH. Expression of hepatic GH receptor and IGF 1 mRNAs and hepatic STAT5 (phospho Y694) protein levels are reduced prior to and after GH administration, indicating GH resistance. However, restoration of G6Pase expression in the liver by treatment with adeno-associated virus 8 pseudotyped vector expressing G6Pase (AAV2/8-G6Pase) corrected body weight, but failed to normalize plasma IGF 1 in G6pase (-/-) mice. Untreated G6pase (-/-) mice also demonstrated severe delay of growth plate ossification at 12 days of age; those treated with AAV2/8-G6Pase at 14 days of age demonstrated skeletal dysplasia and limb shortening when analyzed radiographically at 6 months of age, in spite of apparent metabolic correction. Moreover, gene therapy with AAV2/9-G6Pase only partially corrected growth in GSD-Ia affected dogs as detected by weight and bone measurements and serum IGF 1 concentrations were persistently low in treated dogs. We also found that heterozygous GSD-Ia carrier dogs had decreased serum IGF 1, adult body weights and bone dimensions compared to wild-type littermates. In sum, these findings suggest that growth failure in GSD-Ia results, at least in part, from hepatic GH resistance. In addition, gene therapy improved growth in addition to promoting long-term survival in dogs and mice with GSD-Ia.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1016/j.ymgme.2013.03.018

Publication Info

Brooks, Elizabeth Drake, Dianne Little, Ramamani Arumugam, Baodong Sun, Sarah Curtis, Amanda Demaster, Michael Maranzano, Mark W Jackson, et al. (2013). Pathogenesis of growth failure and partial reversal with gene therapy in murine and canine Glycogen Storage Disease type Ia. Molecular Genetics and Metabolism, 109(2). pp. 161–170. 10.1016/j.ymgme.2013.03.018 Retrieved from https://hdl.handle.net/10161/15086.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Sun

Baodong Sun

Associate Professor in Pediatrics

My overall research interests are finding effective treatment for human glycogen storage diseases (GSDs) and other inherited metabolic disorders. My current research focuses on identification of novel therapeutic targets and development of effective therapies for GSD II (Pompe disease), GSD III (Cori disease), and GSD IV (Andersen disease) using cellular and animal disease models. The main therapeutic approaches we are using in our pre-clinical studies include protein/enzyme therapy, AAV-mediated gene therapy, and substrate reduction therapy with small molecule drugs.

Freemark

Michael Scott Freemark

Robert C. Atkins, M.D. and Veronica Atkins Distinguished Professor of Pediatrics, in the School of Medicine

The primary objective of my basic research has been to elucidate the roles of placental and fetal hormones in the regulation of maternal metabolism and fetal growth. My work has focused on the lactogenic hormones produced by the pituitary gland and placenta. To that end we used targeted knockout mice to explore the molecular mechanisms by which prolactin and placental lactogen regulate pancreatic beta cell mass and insulin production during pregnancy and postnatal life.

I also have a longstanding clinical research interest in the pathogenesis and treatment of obesity and hyperlipidemia and the prevention of type 2 diabetes. In previous studies we showed that the drug metformin reduces fat stores and blood glucose and insulin levels in obese adolescents and may reduce the risk of progression to diabetes in selected patients. We have also examined the unique metabolic characteristics of Prader Willi syndrome, a genetic obesity disorder.

Finally, my colleagues and I have performed detailed studies of hormone production and intermediary metabolism in malnourished children in Uganda, Bangladesh, Liberia, and Burkina Faso and characterized the effects of concurrent HIV infection on nutritional recovery.  We showed that the adipocyte hormone leptin is a major determinant of morbidity and mortality in children with moderate and severe acute malnutrition. 

Koeberl

Dwight D. Koeberl

Professor of Pediatrics

As a physician-scientist practicing clinical and biochemical genetics, I am highly motivated to seek improved therapy for my patients with inherited disorders of metabolism. The focus of our research has been the development of gene therapy with adeno-associated virus (AAV) vectors, most recently by genome editing with CRISPR/Cas9. We have developed gene therapy for inherited disorders of metabolism, especially glycogen storage disease (GSD) and phenylketonuria (PKU). 
1) GSD Ia: Glucose-6-phosphatase (G6Pase) deficient animals provide models for developing new therapy for GSD Ia, although early mortality complicates research with both the murine and canine models of GSD Ia. We have prolonged the survival and reversed the biochemical abnormalities in G6Pase-knockout mice and dogs with GSD type Ia, following the administration of AAV8-pseudotyped AAV vectors encoding human G6Pase. More recently, we have performed genome editing to integrate a therapeutic transgene in a safe harbor locus for mice with GSD Ia, permanently correcting G6Pase deficiency in the GSD Ia liver. Finally, we have identified reduced autophagy as an underlying hepatocellular defect that might be treated with pro-autophagic drugs in GSD Ia.
2) GSD II/Pompe disease: Pompe disease is caused by the deficiency of acid-alpha-glucosidase (GAA) in muscle, resulting in the massive accumulation of lysosomal glycogen in striated muscle with accompanying weakness. While enzyme replacement has shown promise in infantile-onset Pompe disease patients, no curative therapy is available. We demonstrated that AAV vector-mediated gene therapy will likely overcome limitations of enzyme replacement therapy, including formation of anti-GAA antibodies and the need for frequent infusions. We demonstrated that liver-restricted expression with an AAV vector prevented antibody responses in GAA-knockout mice by inducing immune tolerance to human GAA. Antibody responses have complicated enzyme replacement therapy for Pompe disease and emphasized a potential advantage of gene therapy for this disorder. The strategy of administering low-dose gene therapy prior to initiation of enzyme replacement therapy, termed immunomodulatory gene therapy, prevented antibody formation and increased efficacy in Pompe disease mice. We are currently conducting a Phase I clinical trial of immunomodulatory gene therapy in adult patients with Pompe disease. Furthermore, we have developed drug therapy to increase the receptor-mediated uptake of GAA in muscle cells, which provides adjunctive therapy to more definitively treat Pompe disease.
3) PKU: In collaboration with researchers at OHSU, we performed an early gene therapy experiment that demonstrated long-term biochemical correction of PKU in mice with an AAV8 vector. PKU is a very significant disorder detected by newborn screening and currently inadequately treated by dietary therapy. Phenylalanine levels in mice were corrected in the blood, and elevated phenylalanine causes mental retardation and birth defects in children born to affected women, and gene therapy for PKU would address an unmet need for therapy in this disorder.

Currently we are developing methods for genome editing that will stably correct the enzyme  deficiency in GSD Ia and in Pompe disease.  Our long-term goal is to develop efficacious genome editing for glycogen storage diseases, which will allow us to treat these conditions early in life with long-term benefits. 


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.