A community approach to mortality prediction in sepsis via gene expression analysis.

Abstract

Improved risk stratification and prognosis prediction in sepsis is a critical unmet need. Clinical severity scores and available assays such as blood lactate reflect global illness severity with suboptimal performance, and do not specifically reveal the underlying dysregulation of sepsis. Here, we present prognostic models for 30-day mortality generated independently by three scientific groups by using 12 discovery cohorts containing transcriptomic data collected from primarily community-onset sepsis patients. Predictive performance is validated in five cohorts of community-onset sepsis patients in which the models show summary AUROCs ranging from 0.765-0.89. Similar performance is observed in four cohorts of hospital-acquired sepsis. Combining the new gene-expression-based prognostic models with prior clinical severity scores leads to significant improvement in prediction of 30-day mortality as measured via AUROC and net reclassification improvement index These models provide an opportunity to develop molecular bedside tests that may improve risk stratification and mortality prediction in patients with sepsis.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1038/s41467-018-03078-2

Publication Info

Sweeney, Timothy E, Thanneer M Perumal, Ricardo Henao, Marshall Nichols, Judith A Howrylak, Augustine M Choi, Jesús F Bermejo-Martin, Raquel Almansa, et al. (2018). A community approach to mortality prediction in sepsis via gene expression analysis. Nature communications, 9(1). p. 694. 10.1038/s41467-018-03078-2 Retrieved from https://hdl.handle.net/10161/26958.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.