Development of predictive models for all individual questions of SRS-22R after adult spinal deformity surgery: a step toward individualized medicine.
Date
2019-09
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Purpose
Health-related quality of life (HRQL) instruments are essential in value-driven health care, but patients often have more specific, personal priorities when seeking surgical care. The Scoliosis Research Society-22R (SRS-22R), an HRQL instrument for spinal deformity, provides summary scores spanning several health domains, but these may be difficult for patients to utilize in planning their specific care goals. Our objective was to create preoperative predictive models for responses to individual SRS-22R questions at 1 and 2 years after adult spinal deformity (ASD) surgery to facilitate precision surgical care.Methods
Two prospective observational cohorts were queried for ASD patients with SRS-22R data at baseline and 1 and 2 years after surgery. In total, 150 covariates were used in training machine learning models, including demographics, surgical data and perioperative complications. Validation was accomplished via an 80%/20% data split for training and testing, respectively. Goodness of fit was measured using area under receiver operating characteristic (AUROC) curves.Results
In total, 561 patients met inclusion criteria. The AUROC ranged from 56.5 to 86.9%, reflecting successful fits for most questions. SRS-22R questions regarding pain, disability and social and labor function were the most accurately predicted. Models were less sensitive to questions regarding general satisfaction, depression/anxiety and appearance.Conclusions
To the best of our knowledge, this is the first study to explicitly model the prediction of individual answers to the SRS-22R questionnaire at 1 and 2 years after deformity surgery. The ability to predict individual question responses may prove useful in preoperative counseling in the age of individualized medicine. These slides can be retrieved under Electronic Supplementary Material.Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Ames, Christopher P, Justin S Smith, Ferran Pellisé, Michael Kelly, Jeffrey L Gum, Ahmet Alanay, Emre Acaroğlu, Francisco Javier Sánchez Pérez-Grueso, et al. (2019). Development of predictive models for all individual questions of SRS-22R after adult spinal deformity surgery: a step toward individualized medicine. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society, 28(9). pp. 1998–2011. 10.1007/s00586-019-06079-x Retrieved from https://hdl.handle.net/10161/28187.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Christopher Ignatius Shaffrey
I have more than 25 years of experience treating patients of all ages with spinal disorders. I have had an interest in the management of spinal disorders since starting my medical education. I performed residencies in both orthopaedic surgery and neurosurgery to gain a comprehensive understanding of the entire range of spinal disorders. My goal has been to find innovative ways to manage the range of spinal conditions, straightforward to complex. I have a focus on managing patients with complex spinal disorders. My patient evaluation and management philosophy is to provide engaged, compassionate care that focuses on providing the simplest and least aggressive treatment option for a particular condition. In many cases, non-operative treatment options exist to improve a patient’s symptoms. I have been actively engaged in clinical research to find the best ways to manage spinal disorders in order to achieve better results with fewer complications.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.