Stem cell therapies in cerebral palsy and autism spectrum disorder.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats

Attention Stats


Across disciplines, there is great anticipation that evolving cell therapies may finally provide a therapeutic option for conditions in dire need. These conditions are typically complex and their pathophysiology incompletely understood, hindering the development of robust preclinical models and the precise assessment of therapeutic effects in human studies. This article provides an overview of the status of cell therapy investigations in two common neurodevelopmental disorders, cerebral palsy and autism spectrum disorder. Challenges facing this line of study, including inherent heterogeneity, knowledge gaps, and unrealistic expectations, are discussed. Much progress has been made in the past decade, but to definitively determine if cell therapies have a role in the treatment of neurodevelopmental disorders, both fields will need to evolve together. WHAT THIS PAPER ADDS: The safety profile of reported cell therapies in children with neurodevelopmental disorders is encouraging. Efficacy trials in cerebral palsy and autism spectrum disorder are ongoing in the United States and Asia. Unresolved issues pertain to the properties of the cells being studied and the characteristics of the neurodevelopmental conditions themselves.





Published Version (Please cite this version)


Publication Info

Sun, Jessica M, and Joanne Kurtzberg (2021). Stem cell therapies in cerebral palsy and autism spectrum disorder. Developmental medicine and child neurology, 63(5). pp. 503–510. 10.1111/dmcn.14789 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.


Jessica Muller Sun

Associate Professor of Pediatrics

Joanne Kurtzberg

Jerome S. Harris Distinguished Professor of Pediatrics

Dr. Kurtzberg is an internationally renowned expert in pediatric hematology/oncology, pediatric blood and marrow transplantation, umbilical cord blood banking and transplantation, and novel applications of cord blood and birthing tissues in the emerging fields of cellular therapies and regenerative medicine.   Dr. Kurtzberg serves as the Director of the Marcus Center for Cellular Cures (MC3), Director of the Pediatric Transplant and Cellular Therapy Program, Director of the Carolinas Cord Blood Bank, and Co-Director of the Stem Cell Transplant Laboratory at Duke University.  The Carolinas Cord Blood Bank is an FDA licensed public cord blood bank distributing unrelated cord blood units for donors for hematopoietic stem cell transplantation (HSCT) through the CW Bill Young Cell Transplantation Program.  The Robertson GMP Cell Manufacturing Laboratory supports manufacturing of RETHYMIC (BLA, Enzyvant, 2021), allogeneic cord tissue derived and bone marrow derived mesenchymal stromal cells (MSCs), and DUOC, a microglial/macrophage cell derived from cord blood.

Dr. Kurtzberg’s research in MC3 focuses on translational studies from bench to bedside, seeking to develop transformative clinical therapies using cells, tissues, molecules, genes, and biomaterials to treat diseases and injuries that currently lack effective treatments. Recent areas of investigation in MC3 include clinical trials investigating the safety and efficacy of autologous and allogeneic cord blood in children with neonatal brain injury – hypoxic ischemic encephalopathy (HIE), cerebral palsy (CP), and autism. Clinical trials testing allogeneic cord blood are also being conducted in adults with acute ischemic stroke. Clinical trials optimizing manufacturing and testing the safety and efficacy of cord tissue MSCs in children with autism, CP and HIE and adults with COVID-lung disease are underway. DUOC, given intrathecally, is under study in children with leukodystrophies and adults with primary progressive multiple sclerosis.

In the past, Dr. Kurtzberg has developed novel chemotherapeutic drugs for acute leukemias, assays enumerating ALDH bright cells to predict cord blood unit potency, methods of cord blood expansion, potency assays for targeted cell and tissue based therapies. Dr. Kurtzberg currently holds several INDs for investigational clinical trials from the FDA.  She has also trained numerous medical students, residents, clinical and post-doctoral fellows over the course of her career.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.