The Lipid A 1-Phosphatase, LpxE, Functionally Connects Multiple Layers of Bacterial Envelope Biogenesis.

Abstract

Although distinct lipid phosphatases are thought to be required for processing lipid A (component of the outer leaflet of the outer membrane), glycerophospholipid (component of the inner membrane and the inner leaflet of the outer membrane), and undecaprenyl pyrophosphate (C55-PP; precursors of peptidoglycan and O antigens of lipopolysaccharide) in Gram-negative bacteria, we report that the lipid A 1-phosphatases, LpxEs, functionally connect multiple layers of cell envelope biogenesis in Gram-negative bacteria. We found that Aquifex aeolicus LpxE structurally resembles YodM in Bacillus subtilis, a phosphatase for phosphatidylglycerol phosphate (PGP) with a weak in vitro activity on C55-PP, and rescues Escherichia coli deficient in PGP and C55-PP phosphatase activities; deletion of lpxE in Francisella novicida reduces the MIC value of bacitracin, indicating a significant contribution of LpxE to the native bacterial C55-PP phosphatase activity. Suppression of plasmid-borne lpxE in F. novicida deficient in chromosomally encoded C55-PP phosphatase activities results in cell enlargement, loss of O-antigen repeats of lipopolysaccharide, and ultimately cell death. These discoveries implicate LpxE as the first example of a multifunctional regulatory enzyme that orchestrates lipid A modification, O-antigen production, and peptidoglycan biogenesis to remodel multiple layers of the Gram-negative bacterial envelope.IMPORTANCE Dephosphorylation of the lipid A 1-phosphate by LpxE in Gram-negative bacteria plays important roles in antibiotic resistance, bacterial virulence, and modulation of the host immune system. Our results demonstrate that in addition to removing the 1-phosphate from lipid A, LpxEs also dephosphorylate undecaprenyl pyrophosphate, an important metabolite for the synthesis of the essential envelope components, peptidoglycan and O-antigen. Therefore, LpxEs participate in multiple layers of biogenesis of the Gram-negative bacterial envelope and increase antibiotic resistance. This discovery marks an important step toward understanding the regulation and biogenesis of the Gram-negative bacterial envelope.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1128/mbio.00886-19

Publication Info

Zhao, Jinshi, Jinsu An, Dohyeon Hwang, Qinglin Wu, Su Wang, Robert A Gillespie, Eun Gyeong Yang, Ziqiang Guan, et al. (2019). The Lipid A 1-Phosphatase, LpxE, Functionally Connects Multiple Layers of Bacterial Envelope Biogenesis. mBio, 10(3). 10.1128/mbio.00886-19 Retrieved from https://hdl.handle.net/10161/19052.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Guan

Ziqiang Guan

Research Professor in Biochemistry

We develop and apply mass spectrometry techniques to address biochemical and biomedical questions that are lipid-related. Research projects include:

1) Structural lipidomics

o   Develop and apply high resolution tandem mass spectrometry-based lipidomics for the discovery, structural elucidation and functional study of novel lipids.

2) Elucidation of novel pathways/enzymes of lipid biosynthesis and metabolism

o   Genetic, biochemical and MS approaches are employed to identify the substrates and pathways involved in lipid biosynthesis and metabolism

3) Identification of lipid biomarkers of genetic diseases and cancers

o    Provide molecular insights into the disease mechanisms, as well as to serve as the diagnostic and prognostic tools of diseases.

Zhou

Pei Zhou

Professor of Biochemistry

The Zhou lab focuses on the elucidation of the structure and dynamics of protein–protein and protein–ligand interactions and their functions in various cellular processes. Our current efforts are directed at enzymes and protein complexes involved in bacterial membrane biosynthesis, translesion DNA synthesis, co-transcriptional regulation, and host-pathogen interactions. Our investigations of these important cellular machineries have led to the development of novel antibiotics and cancer therapeutics, as well as the establishment of new biotechnology adventures.

 

The Zhou lab integrates a variety of biochemical and biophysical tools, including NMR, X-ray crystallography, cryo-EM, and enzymology. The lab has played a major role in the development and application of innovative NMR technologies, including high-resolution, high-dimensional spectral reconstruction techniques.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.