Sex-Specific Effects of Progesterone on Early Outcome of Intracerebral Hemorrhage.

Abstract

Background

Preclinical evidence suggests that progesterone improves recovery after intracerebral hemorrhage (ICH); however, gonadal hormones have sex-specific effects. Therefore, an experimental model of ICH was used to assess recovery after progesterone administration in male and female rats.

Methods

ICH was induced in male and female Wistar rats via stereotactic intrastriatal injection of clostridial collagenase (0.5 U). Animals were randomized to receive vehicle or 8 mg/kg progesterone intraperitoneally at 2 h, then subcutaneously at 5, 24, 48, and 72 h after injury. Outcomes included relevant physiology during the first 3 h, hemorrhage and edema evolution over the first 24 h, proinflammatory transcription factor and cytokine regulation at 24 h, rotarod latency and neuroseverity score over the first 7 days, and microglial activation/macrophage recruitment at 7 days after injury.

Results

Rotarod latency (p = 0.001) and neuroseverity score (p = 0.01) were improved in progesterone-treated males, but worsened in progesterone-treated females (p = 0.028 and p = 0.008, respectively). Progesterone decreased cerebral edema (p = 0.04), microglial activation/macrophage recruitment (p < 0.001), and proinflammatory transcription factor phosphorylated nuclear factor-x03BA;B p65 expression (p = 0.0038) in males but not females, independent of tumor necrosis factor-α, interleukin-6, and toll-like receptor-4 expression. Cerebral perfusion was increased in progesterone-treated males at 4 h (p = 0.043) but not 24 h after injury. Hemorrhage volume, arterial blood gases, glucose, and systolic blood pressure were not affected.

Conclusions

Progesterone administration improved early neurobehavioral recovery and decreased secondary neuroinflammation after ICH in male rats. Paradoxically, progesterone worsened neurobehavioral recovery and did not modify neuroinflammation in female rats. Future work should isolate mechanisms of sex-specific progesterone effects after ICH.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1159/000440883

Publication Info

Hsieh, Justin T, Beilei Lei, Huaxin Sheng, Talagnair Venkatraman, Christopher D Lascola, David S Warner and Michael L James (2016). Sex-Specific Effects of Progesterone on Early Outcome of Intracerebral Hemorrhage. Neuroendocrinology, 103(5). pp. 518–530. 10.1159/000440883 Retrieved from https://hdl.handle.net/10161/23295.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Sheng

Huaxin Sheng

Associate Professor in Anesthesiology

We have successfully developed various rodent models of brain and spinal cord injuries in our lab, such as focal cerebral ischemia, global cerebral ischemia, head trauma, subarachnoid hemorrhage, intracerebral hemorrhage, spinal cord ischemia and compression injury. We also established cardiac arrest and hemorrhagic shock models for studying multiple organ dysfunction.  Our current studies focus on two projects. One is to examine the efficacy of catalytic antioxidant in treating cerebral ischemia and the other is to examine the efficacy of post-conditioning on outcome of subarachnoid hemorrhage induced cognitive dysfunction.

Lascola

Christopher David Lascola

Associate Professor of Radiology
James

Michael Lucas James

Professor of Anesthesiology

With a clinical background in neuroanesthesia and neurointensive care, I have a special interest in translational research in intracerebral hemorrhage and traumatic brain injury. I am fortunate to be part of a unique team of highly motivated and productive individuals who allow me to propel ideas from bench to bedside and the ability to reverse translate ideas from the bedside back to the bench.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.