Patterns of Song across Natural and Anthropogenic Soundscapes Suggest That White-Crowned Sparrows Minimize Acoustic Masking and Maximize Signal Content.

Abstract

Soundscapes pose both evolutionarily recent and long-standing sources of selection on acoustic communication. We currently know more about the impact of evolutionarily recent human-generated noise on communication than we do about how natural sounds such as pounding surf have shaped communication signals over evolutionary time. Based on signal detection theory, we hypothesized that acoustic phenotypes will vary with both anthropogenic and natural background noise levels and that similar mechanisms of cultural evolution and/or behavioral flexibility may underlie this variation. We studied song characteristics of white-crowned sparrows (Zonotrichia leucophrys nuttalli) across a noise gradient that includes both anthropogenic and natural sources of noise in San Francisco and Marin counties, California, USA. Both anthropogenic and natural soundscapes contain high amplitude low frequency noise (traffic or surf, respectively), so we predicted that birds would produce songs with higher minimum frequencies in areas with higher amplitude background noise to avoid auditory masking. We also anticipated that song minimum frequencies would be higher than the projected lower frequency limit of hearing based on site-specific masking profiles. Background noise was a strong predictor of song minimum frequency, both within a local noise gradient of three urban sites with the same song dialect and cultural evolutionary history, and across the regional noise gradient, which encompasses 11 urban and rural sites, several dialects, and several anthropogenic and natural sources of noise. Among rural sites alone, background noise tended to predict song minimum frequency, indicating that urban sites were not solely responsible for driving the regional pattern. These findings support the hypothesis that songs vary with local and regional soundscapes regardless of the source of noise. Song minimum frequency from five core study sites was also higher than the lower frequency limit of hearing at each site, further supporting the hypothesis that songs vary to transmit through noise in local soundscapes. Minimum frequencies leveled off at noisier sites, suggesting that minimum frequencies are constrained to an upper limit, possibly to retain the information content of wider bandwidths. We found evidence that site noise was a better predictor of song minimum frequency than territory noise in both anthropogenic and natural soundscapes, suggesting that cultural evolution rather than immediate behavioral flexibility is responsible for local song variation. Taken together, these results indicate that soundscapes shape song phenotype across both evolutionarily recent and long-standing soundscapes.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1371/journal.pone.0154456

Publication Info

Derryberry, Elizabeth P, Raymond M Danner, Julie E Danner, Graham E Derryberry, Jennifer N Phillips, Sara E Lipshutz, Katherine Gentry, David A Luther, et al. (2016). Patterns of Song across Natural and Anthropogenic Soundscapes Suggest That White-Crowned Sparrows Minimize Acoustic Masking and Maximize Signal Content. PloS one, 11(4). p. e0154456. 10.1371/journal.pone.0154456 Retrieved from https://hdl.handle.net/10161/28959.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Lipshutz

Sara E Lipshutz

Assistant Professor of Biology

Our research focuses on the evolution of behavior across weird and wonderfully diverse species of birds. This work bridges “muddy boots” experimental fieldwork with a variety of molecular and computational approaches in genetics, genomics, neuroscience, and endocrinology. We have several research foci:  

 

1. Female perspectives in biology. Cultural biases shape our predictions for how and why animals behave the way they do, and female animals have historically been neglected in biological research. We study the evolution of female competition across diverse avian species, ranging from social polyandry to monogamy in shorebirds and songbirds. Critically, hypotheses derived from studying males (i.e. testosterone focus) do not explain interspecific variation in female aggression. We use population genomic and transcriptomic data to evaluate the proximate causes and ultimate consequences of female competition.  

 

2. Global change biology. In the age of the Anthropocene, animals are facing evolutionary unprecedented environmental changes. Sensory pollutants like anthropogenic noise and artificial light at night can alter animal physiology, behavior, and ecology on a rapid timescale. Behavior flexibility and adaptation may lead the way in helping animals respond to novel challenges. We investigate why some individuals and species may be better prepared to face global change.  


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.