Patterns of Song across Natural and Anthropogenic Soundscapes Suggest That White-Crowned Sparrows Minimize Acoustic Masking and Maximize Signal Content.

dc.contributor.author

Derryberry, Elizabeth P

dc.contributor.author

Danner, Raymond M

dc.contributor.author

Danner, Julie E

dc.contributor.author

Derryberry, Graham E

dc.contributor.author

Phillips, Jennifer N

dc.contributor.author

Lipshutz, Sara E

dc.contributor.author

Gentry, Katherine

dc.contributor.author

Luther, David A

dc.contributor.editor

Fine, Michael L

dc.date.accessioned

2023-09-02T02:39:52Z

dc.date.available

2023-09-02T02:39:52Z

dc.date.issued

2016-01

dc.date.updated

2023-09-02T02:39:50Z

dc.description.abstract

Soundscapes pose both evolutionarily recent and long-standing sources of selection on acoustic communication. We currently know more about the impact of evolutionarily recent human-generated noise on communication than we do about how natural sounds such as pounding surf have shaped communication signals over evolutionary time. Based on signal detection theory, we hypothesized that acoustic phenotypes will vary with both anthropogenic and natural background noise levels and that similar mechanisms of cultural evolution and/or behavioral flexibility may underlie this variation. We studied song characteristics of white-crowned sparrows (Zonotrichia leucophrys nuttalli) across a noise gradient that includes both anthropogenic and natural sources of noise in San Francisco and Marin counties, California, USA. Both anthropogenic and natural soundscapes contain high amplitude low frequency noise (traffic or surf, respectively), so we predicted that birds would produce songs with higher minimum frequencies in areas with higher amplitude background noise to avoid auditory masking. We also anticipated that song minimum frequencies would be higher than the projected lower frequency limit of hearing based on site-specific masking profiles. Background noise was a strong predictor of song minimum frequency, both within a local noise gradient of three urban sites with the same song dialect and cultural evolutionary history, and across the regional noise gradient, which encompasses 11 urban and rural sites, several dialects, and several anthropogenic and natural sources of noise. Among rural sites alone, background noise tended to predict song minimum frequency, indicating that urban sites were not solely responsible for driving the regional pattern. These findings support the hypothesis that songs vary with local and regional soundscapes regardless of the source of noise. Song minimum frequency from five core study sites was also higher than the lower frequency limit of hearing at each site, further supporting the hypothesis that songs vary to transmit through noise in local soundscapes. Minimum frequencies leveled off at noisier sites, suggesting that minimum frequencies are constrained to an upper limit, possibly to retain the information content of wider bandwidths. We found evidence that site noise was a better predictor of song minimum frequency than territory noise in both anthropogenic and natural soundscapes, suggesting that cultural evolution rather than immediate behavioral flexibility is responsible for local song variation. Taken together, these results indicate that soundscapes shape song phenotype across both evolutionarily recent and long-standing soundscapes.

dc.identifier

PONE-D-16-01504

dc.identifier.issn

1932-6203

dc.identifier.issn

1932-6203

dc.identifier.uri

https://hdl.handle.net/10161/28959

dc.language

eng

dc.publisher

Public Library of Science (PLoS)

dc.relation.ispartof

PloS one

dc.relation.isversionof

10.1371/journal.pone.0154456

dc.subject

Animals

dc.subject

Sparrows

dc.subject

Humans

dc.subject

Vocalization, Animal

dc.subject

Noise

dc.subject

Adaptation, Physiological

dc.subject

Acoustics

dc.subject

Sound

dc.subject

Urbanization

dc.subject

California

dc.subject

Male

dc.subject

Biological Evolution

dc.title

Patterns of Song across Natural and Anthropogenic Soundscapes Suggest That White-Crowned Sparrows Minimize Acoustic Masking and Maximize Signal Content.

dc.type

Journal article

duke.contributor.orcid

Lipshutz, Sara E|0000-0002-9816-2977

pubs.begin-page

e0154456

pubs.issue

4

pubs.organisational-group

Duke

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.organisational-group

Biology

pubs.publication-status

Published

pubs.volume

11

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Patterns of Song across Natural and Anthropogenic Soundscapes Suggest That White-Crowned Sparrows Minimize Acoustic Masking .pdf
Size:
741.44 KB
Format:
Adobe Portable Document Format
Description:
Published version