Highly parallel acoustic assembly of microparticles into well-ordered colloidal crystallites.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats


The precise arrangement of microscopic objects is critical to the development of functional materials and ornately patterned surfaces. Here, we present an acoustics-based method for the rapid arrangement of microscopic particles into organized and programmable architectures, which are periodically spaced within a square assembly chamber. This macroscale device employs two-dimensional bulk acoustic standing waves to propel particles along the base of the chamber toward pressure nodes or antinodes, depending on the acoustic contrast factor of the particle, and is capable of simultaneously creating thousands of size-limited, isotropic and anisotropic assemblies within minutes. We pair experiments with Brownian dynamics simulations to model the migration kinetics and assembly patterns of spherical microparticles. We use these insights to predict and subsequently validate the onset of buckling of the assemblies into three-dimensional clusters by experiments upon increasing the acoustic pressure amplitude and the particle concentration. The simulations are also used to inform our experiments for the assembly of non-spherical particles, which are then recovered via fluid evaporation and directly inspected by electron microscopy. This method for assembly of particles offers several notable advantages over other approaches (e.g., magnetics, electrokinetics and optical tweezing) including simplicity, speed and scalability and can also be used in concert with other such approaches for enhancing the types of assemblies achievable.





Published Version (Please cite this version)


Publication Info

Owens, Crystal E, C Wyatt Shields, Daniela F Cruz, Patrick Charbonneau and Gabriel P López (2016). Highly parallel acoustic assembly of microparticles into well-ordered colloidal crystallites. Soft Matter, 12(3). pp. 717–728. 10.1039/c5sm02348c Retrieved from https://hdl.handle.net/10161/15340.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Patrick Charbonneau

Professor of Chemistry

Professor Charbonneau studies soft matter. His work combines theory and simulation to understand the glass problem, protein crystallization, microphase formation, and colloidal assembly in external fields.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.