Prognostic Modeling of Parkinson's Disease Progression Using Early Longitudinal Patterns of Change.
Date
2021-07-30
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Background
Predicting Parkinson's disease (PD) progression may enable better adaptive and targeted treatment planning.Objective
Develop a prognostic model using multiple, easily acquired longitudinal measures to predict temporal clinical progression from Hoehn and Yahr (H&Y) stage 1 or 2 to stage 3 in early PD.Methods
Predictive longitudinal measures of PD progression were identified by the joint modeling method. Measures were extracted by multivariate functional principal component analysis methods and used as covariates in Cox proportional hazards models. The optimal model was developed from the Parkinson's Progression Marker Initiative (PPMI) data set and confirmed with external validation from the Longitudinal and Biomarker Study in PD (LABS-PD) study.Results
The proposed prognostic model with longitudinal information of selected clinical measures showed significant advantages in predicting PD temporal progression in comparison to a model with only baseline information (iAUC = 0.812 vs. 0.743). The modeling results allowed the development of a prognostic index for categorizing PD patients into low, mid, and high risk of progression to HY 3 that is offered to facilitate physician-patient discussion on prognosis.Conclusion
Incorporating longitudinal information of multiple clinical measures significantly enhances predictive performance of prognostic models. Furthermore, the proposed prognostic index enables clinicians to classify patients into different risk groups, which could be adaptively updated as new longitudinal information becomes available. Modeling of this type allows clinicians to utilize observational data sets that inform on disease natural history and specifically, for precision medicine, allows the insertion of a patient's clinical data to calculate prognostic estimates at the individual case level. © 2021 International Parkinson and Movement Disorder Society.Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Ren, Xuehan, Jeffrey Lin, Glenn T Stebbins, Christopher G Goetz and Sheng Luo (2021). Prognostic Modeling of Parkinson's Disease Progression Using Early Longitudinal Patterns of Change. Movement disorders : official journal of the Movement Disorder Society. 10.1002/mds.28730 Retrieved from https://hdl.handle.net/10161/23665.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.