Leptin directly promotes T-cell glycolytic metabolism to drive effector T-cell differentiation in a mouse model of autoimmunity.
Date
2016-08
Journal Title
Journal ISSN
Volume Title
Citation Stats
Abstract
Upon activation, T cells require energy for growth, proliferation, and function. Effector T (Teff) cells, such as Th1 and Th17 cells, utilize high levels of glycolytic metabolism to fuel proliferation and function. In contrast, Treg cells require oxidative metabolism to fuel suppressive function. It remains unknown how Teff/Treg-cell metabolism is altered when nutrients are limited and leptin levels are low. We therefore examined the role of malnutrition and associated hypoleptinemia on Teff versus Treg cells. We found that both malnutrition-associated hypoleptinemia and T cell-specific leptin receptor knockout suppressed Teff-cell number, function, and glucose metabolism, but did not alter Treg-cell metabolism or suppressive function. Using the autoimmune mouse model EAE, we confirmed that fasting-induced hypoleptinemia altered Teff-cell, but not Treg-cell, glucose metabolism, and function in vivo, leading to decreased disease severity. To explore potential mechanisms, we examined HIF-1α, a key regulator of Th17 differentiation and Teff-cell glucose metabolism, and found HIF-1α expression was decreased in T cell-specific leptin receptor knockout Th17 cells, and in Teff cells from fasted EAE mice, but was unchanged in Treg cells. Altogether, these data demonstrate a selective, cell-intrinsic requirement for leptin to upregulate glucose metabolism and maintain function in Teff, but not Treg cells.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Gerriets, Valerie A, Keiko Danzaki, Rigel J Kishton, William Eisner, Amanda G Nichols, Donte C Saucillo, Mari L Shinohara, Nancie J MacIver, et al. (2016). Leptin directly promotes T-cell glycolytic metabolism to drive effector T-cell differentiation in a mouse model of autoimmunity. Eur J Immunol, 46(8). pp. 1970–1983. 10.1002/eji.201545861 Retrieved from https://hdl.handle.net/10161/12472.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

Mari L. Shinohara
Shinohara Lab Website
Immune responses against pathogens are essential for host protection, but excessive and uncontrolled immune reactions can lead to autoimmunity. How does our immune system keep the balance fine-tuned? This is a central question being asked in my laboratory.
The immune system needs to detect pathogens quickly and effectively. This is performed by the innate immune system, which includes cells such as macrophages and dendritic cells (DCs). Pathogens are recognized by pattern recognition receptors (PRRs) and may be cleared in the innate immune system. However, when pathogens cannot be eliminated by innate immunity, the adaptive immune system participates by exploiting the ability of T cells and B cells. The two immune systems work together not only to clear pathogens effectively but also to avoid collateral damages by our own immune responses.
In my lab, we use mouse models for infectious and autoimmune diseases to understand the cellular and molecular mechanisms of; pathogen recognition by PRRs in macrophages and DCs, initiation of inflammatory responses in the innate immune system, and the impact of innate immune inflammation on the development and regulation of T cell-mediated adaptive immune responses.
Several projects are ongoing in the lab. They are to study (1) the roles of PRR in EAE (an animal model of multiple sclerosis), (2) the interplay between immune cells and CNS (central nervous system)-resident cells during EAE and fungal infection, (3) protective and pathogenic mechanisms of immune cells in the lung during fungal infection and inflammation, and (4) the roles of a protein termed osteopontin (OPN), as both secreted (sOPN) and intracellular (iOPN) isoforms, in regulation of immune responses . Although we are very active in EAE to study autoimmunity, other mouse models, such as graft-versus-host disease (GvHD) is ongoing. Cell types we study are mainly DCs, macrophages, neutrophils, and T cells.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.