Adrenoceptor blockade modifies regional cerebral blood flow responses to hyperbaric hyperoxia: Protection against CNS oxygen toxicity.

Abstract

Exposure to extreme-hyperbaric oxygen (HBO2), > 5-6 atmospheres absolute (ATA), produces baroreflex impairment, sympathetic hyperactivation, hypertension, tachycardia, and cerebral hyperemia, known as Phase II, culminating in seizures. We hypothesized that attenuation of the effects of high sympathetic outflow would preserve regional cerebral blood flow (rCBF) and protect against HBO2-induced seizures. To explore this possibility, we tested four adrenoceptor antagonists in conscious and anesthetized rats exposed to HBO2 at 5 and 6 ATA, respectively: phentolamine (nonselective α1 and 2), prazosin (selective α1), propranolol (nonselective β1 and 2) and atenolol (selective β1). In conscious rats, 4 drug-doses were administered to rats prior to HBO2 exposures, and seizure latencies were recorded. Drug-doses that provided similar protection against seizures were administered before HBO2 exposures in anesthetized rats to determine the effects of adrenoceptor blockade on mean arterial pressure, heart rate, rCBF and EEG spikes. All four drugs modified cardiovascular and rCBF responses in HBO2 that aligned with epileptiform discharges, but only phentolamine and propranolol effectively increased EEG spike latencies by ~20 and 36 min, respectively. When phentolamine and propranolol were delivered during HBO2 at the onset of phase II, only propranolol led to sustained reductions in heart rate and rCBF, preventing the appearance of epileptiform discharges. The enhanced effectiveness of propranolol may extend beyond β-adrenoceptor blockade, i.e. membrane stability and reduced metabolic activity. These results indicate that adrenoceptor drug pre-treatment will minimize the effects of excessive sympathetic outflow on rCBF and extend HBO2 exposure time.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1152/japplphysiol.00540.2018

Publication Info

Gasier, Heath G, Ivan T Demchenko, Sergei Yu Zhilyaev, Alexander N Moskvin, Alexander I Krivchenko and Claude A Piantadosi (2018). Adrenoceptor blockade modifies regional cerebral blood flow responses to hyperbaric hyperoxia: Protection against CNS oxygen toxicity. Journal of applied physiology (Bethesda, Md. : 1985), 125(4). pp. 1296–1304. 10.1152/japplphysiol.00540.2018 Retrieved from https://hdl.handle.net/10161/24103.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Gasier

Heath Gasier

Associate Professor in Anesthesiology

I am a physiologist who joined Duke University in 2019 after retiring from military service. My research has focused on understanding how oxidant stress impacts cellular and systems physiology. Initially, I studied in humans how hyperbaric oxygen (HBO2) within the therapeutic range and high altitude influence nitric oxide production, antioxidant defenses, tissue oxygenation and muscle performance. This work sparked my interest in redox biology and led me to train under Dr. Claude A. Piantadosi at Duke University. Here, I began to study in mice and rats the impact of extreme HBO2 on the central nervous system (CNS). The objectives were to identify in rodents the origin and mechanisms of CNS oxygen toxicity, and test targeted pharmacological intervention strategies. It was during this time that I became interested in heme oxygenase 1 (HO-1). During my final military assignment, I continued to work on HBO2 and CNS oxygen toxicity related research (pharmacological intervention) and initiated new studies examining how HO-1 induction influences musculoskeletal health in diet-induced obesity. These studies led to follow-on work aimed at determining the mechanisms of HO-1 induction and mitochondrial dynamic regulation in an in vitro model of diet-induced obesity. In addition, I was involved in research aimed at understanding how antioxidants influence skeletal muscle mitochondrial dynamics in rodents and cells exposed heat stress and extreme high altitude.

Since returning to Duke University, I continue to conduct research focused on understanding how oxidant stress induced by HBO2 and obesity influences mitochondrial dynamic regulation in the brain, lung and skeletal muscle. I am now studying how sarcopenia and gender influence these responses. I am also involved (Co-I) in research testing the efficacy of a home-based high intensity interval training program in COVID-19 critical illness and early parenteral nutrition in abdominal trauma victims. In both of these studies, my efforts will be directed towards measuring inflammation and mitochondrial quality control responses to the interventions, which are linked to HO-1 activation.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.