Does MIS Surgery Allow for Shorter Constructs in the Surgical Treatment of Adult Spinal Deformity?

Abstract

Background

The length of construct can potentially influence perioperative risks in adult spinal deformity (ASD) surgery. A head-to-head comparison between open and minimally invasive surgery (MIS) techniques for treatment of ASD has yet to be performed.

Objective

To examine the impact of MIS approaches on construct length and clinical outcomes in comparison to traditional open approaches when treating similar ASD profiles.

Methods

Two multicenter databases for ASD, 1 involving MIS procedures and the other open procedures, were propensity matched for clinical and radiographic parameters in this observational study. Inclusion criteria were ASD and minimum 2-year follow-up. Independent t -test and chi-square test were used to evaluate and compare outcomes.

Results

A total of 1215 patients were identified, with 84 patients matched in each group. Statistical significance was found for mean levels fused (4.8 for circumferential MIS [cMIS] and 10.1 for open), mean interbody fusion levels (3.6 cMIS and 2.4 open), blood loss (estimated blood loss 488 mL cMIS and 1762 mL open), and hospital length of stay (6.7 days cMIS and 9.7 days open). There was no significant difference in preoperative radiographic parameters or postoperative clinical outcomes (Owestry Disability Index and visual analog scale) between groups. There was a significant difference in postoperative lumbar lordosis (43.3° cMIS and 49.8° open) and pelvic incidence-lumbar lordosis correction (10.6° cMIS and 5.2° open) in the open group. There was no significant difference in reoperation rate between the 2 groups.

Conclusion

MIS techniques for ASD may reduce construct length, reoperation rates, blood loss, and length of stay without affecting clinical and radiographic outcomes when compared to a similar group of patients treated with open techniques.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1093/neuros/nyw072

Publication Info

Uribe, Juan S, Joshua Beckman, Praveen V Mummaneni, David Okonkwo, Pierce Nunley, Michael Y Wang, Gregory M Mundis, Paul Park, et al. (2017). Does MIS Surgery Allow for Shorter Constructs in the Surgical Treatment of Adult Spinal Deformity?. Neurosurgery, 80(3). pp. 489–497. 10.1093/neuros/nyw072 Retrieved from https://hdl.handle.net/10161/28808.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Shaffrey

Christopher Ignatius Shaffrey

Professor of Orthopaedic Surgery

I have more than 25 years of experience treating patients of all ages with spinal disorders. I have had an interest in the management of spinal disorders since starting my medical education. I performed residencies in both orthopaedic surgery and neurosurgery to gain a comprehensive understanding of the entire range of spinal disorders. My goal has been to find innovative ways to manage the range of spinal conditions, straightforward to complex. I have a focus on managing patients with complex spinal disorders. My patient evaluation and management philosophy is to provide engaged, compassionate care that focuses on providing the simplest and least aggressive treatment option for a particular condition. In many cases, non-operative treatment options exist to improve a patient’s symptoms. I have been actively engaged in clinical research to find the best ways to manage spinal disorders in order to achieve better results with fewer complications.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.