Cervical Vagus Nerve Stimulation Improves Neurologic Outcome After Cardiac Arrest in Mice by Attenuating Oxidative Stress and Excessive Autophagy.
Date
2022-04
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Background
Cerebral ischemia and reperfusion (I/R) induces oxidative stress and activates autophagy, leading to brain injury and neurologic deficits. Cervical vagus nerve stimulation (VNS) increases cerebral blood flow (CBF). In this study, we investigate the effect of VNS-induced CBF increase on neurologic outcomes after cardiac arrest (CA).Materials and methods
A total of 40 male C57Bl/6 mice were subjected to ten minutes of asphyxia CA and randomized to vagus nerve isolation (VNI) or VNS treatment group. Eight mice received sham surgery and VNI. Immediately after resuscitation, 20 minutes of electrical stimulation (1 mA, 1 ms, and 10 Hz) was started in the VNS group. Electrocardiogram, blood pressure, and CBF were monitored. Neurologic and histologic outcomes were evaluated at 72 hours. Oxidative stress and autophagy were assessed at 3 hours and 24 hours after CA.Results
Baseline characteristics were not different among groups. VNS mice had better behavioral performance (ie, open field, rotarod, and neurologic score) and less neuronal death (p < 0.05, vs VNI) in the hippocampus. CBF was significantly increased in VNS-treated mice at 20 minutes after return of spontaneous circulation (ROSC) (p < 0.05). Furthermore, levels of 8-hydroxy-2'-deoxyguanosine in the blood and autophagy-related proteins (ie, LC-3Ⅱ/Ⅰ, Beclin-1, and p62) in the brain were significantly decreased in VNS mice. Aconitase activity was also reduced, and the p-mTOR/mTOR ratio was increased in VNS mice.Conclusions
Oxidative stress induced by global brain I/R following CA/ROSC leads to early excessive autophagy and impaired autophagic flux. VNS promoted CBF recovery, ameliorating these changes. Neurologic and histologic outcomes were also improved.Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Duan, Weina, Qian Sun, Xiaojing Wu, Zhongyuan Xia, David S Warner, Luis Ulloa, Wei Yang, Huaxin Sheng, et al. (2022). Cervical Vagus Nerve Stimulation Improves Neurologic Outcome After Cardiac Arrest in Mice by Attenuating Oxidative Stress and Excessive Autophagy. Neuromodulation : journal of the International Neuromodulation Society, 25(3). pp. 414–423. 10.1016/j.neurom.2021.12.014 Retrieved from https://hdl.handle.net/10161/24852.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

Wei Yang

Huaxin Sheng
We have successfully developed various rodent models of brain and spinal cord injuries in our lab, such as focal cerebral ischemia, global cerebral ischemia, head trauma, subarachnoid hemorrhage, intracerebral hemorrhage, spinal cord ischemia and compression injury. We also established cardiac arrest and hemorrhagic shock models for studying multiple organ dysfunction. Our current studies focus on two projects. One is to examine the efficacy of catalytic antioxidant in treating cerebral ischemia and the other is to examine the efficacy of post-conditioning on outcome of subarachnoid hemorrhage induced cognitive dysfunction.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.