Sildenafil: Possible Prophylaxis against Swimming-induced Pulmonary Edema.
Date
2017-09
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Swimming-induced pulmonary edema (SIPE) occurs during swimming and scuba diving, usually in cold water, in susceptible healthy individuals, especially military recruits and triathletes. We have previously demonstrated that pulmonary artery (PA) pressure and PA wedge pressure are higher during immersed exercise in SIPE-susceptible individuals versus controls, confirming that SIPE is a form of hemodynamic pulmonary edema. Oral sildenafil 50 mg 1 h before immersed exercise reduced PA pressure and PA wedge pressure, suggesting that sildenafil may prevent SIPE. We present a case of a 46-yr-old female ultratriathlete with a history of at least five SIPE episodes. During a study of an exercise submerged in 20°C water, physiological parameters before and after sildenafil 50 mg orally were as follows: O2 consumption 1.75, 1.76 L·min; HR 129, 135 bpm; arterial pressure 189/88 (mean 121.5), 172/85 (mean 114.3) mm Hg; mean PA pressure 35.3, 28.8 mm Hg; and PA wedge pressure 25.3, 19.7 mm Hg. She has had no recurrences during 20 subsequent triathlons while taking 50 mg sildenafil before each swim. This case supports sildenafil as an effective prophylactic agent against SIPE during competitive surface swimming.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Martina, Stefanie D, John J Freiberger, Dionne F Peacher, Michael J Natoli, Eric A Schinazi, Dawn N Kernagis, Jennifer VF Potter, Claire E Otteni, et al. (2017). Sildenafil: Possible Prophylaxis against Swimming-induced Pulmonary Edema. Med Sci Sports Exerc, 49(9). pp. 1755–1757. 10.1249/MSS.0000000000001293 Retrieved from https://hdl.handle.net/10161/16173.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

John Jacob Freiberger
Dr Freiberger works on the translation of basic science research on reactive oxygen species signaling into clinical practice involving hyperbaric oxygen (HBO). He has performed animal experiments in the use of HBO for ischemic preconditioning and he is currently funded to conduct a randomized controlled trial of the use of HBO for the treatment of bisphosphonate-induced osteonecrosis of the jaw. The mechanisms of action for HBO in the treatment of: diabetic wounds, bony and soft tissue radionecrosis and decompression sickness are also areas of his inquiry. Dr Freiberger also does basic epidemiological research into accidents and injuries associated with diving, high altitude exposure and other adverse conditions associated with extreme environments. Dr. Freiberger directs the fellowship program at the Duke Center for Hyperbaric Medicine and Environmental Physiology.

Richard Edward Moon
Research interests include the study of cardiorespiratory function in humans during challenging clinical settings including the perioperative period, and exposure to environmental conditions such as diving and high altitude. Studies have included gas exchange during diving, the pathophysiology of high altitude and immersion pulmonary edema, the effect of anesthesia and postoperative analgesia on pulmonary function and monitoring of tissue oxygenation. Ongoing human studies include the effect of respiratory muscle training on chemosensitivity and blood gases during stressful breathing: underwater exercise.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.