Stability and the continuum limit of the spin-polarized Thomas-Fermi-Dirac-von Weizsäcker model

dc.contributor.author

Weinan, E

dc.contributor.author

Lu, J

dc.date.accessioned

2017-04-23T15:42:17Z

dc.date.available

2017-04-23T15:42:17Z

dc.date.issued

2012-11-27

dc.description.abstract

The continuum limit of the spin-polarized Thomas-Fermi-Dirac-von Weizsäcker model in an external magnetic field is studied. An extension of the classical Cauchy-Born rule for crystal lattices is established for the electronic structure under sharp stability conditions on charge density and spin density waves. A Landau-Lifshitz type of micromagnetic energy functional is derived. © 2012 American Institute of Physics.

dc.identifier.issn

0022-2488

dc.identifier.uri

https://hdl.handle.net/10161/14048

dc.publisher

AIP Publishing

dc.relation.ispartof

Journal of Mathematical Physics

dc.relation.isversionof

10.1063/1.4755952

dc.title

Stability and the continuum limit of the spin-polarized Thomas-Fermi-Dirac-von Weizsäcker model

dc.type

Journal article

duke.contributor.orcid

Lu, J|0000-0001-6255-5165

pubs.issue

11

pubs.organisational-group

Chemistry

pubs.organisational-group

Duke

pubs.organisational-group

Mathematics

pubs.organisational-group

Physics

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.publication-status

Published

pubs.volume

53

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1102.5545v1.pdf
Size:
224.03 KB
Format:
Adobe Portable Document Format