DAMPs/PAMPs induce monocytic TLR activation and tolerance in COVID-19 patients; nucleic acid binding scavengers can counteract such TLR agonists.

Abstract

Millions of COVID-19 patients have succumbed to respiratory and systemic inflammation. Hyperstimulation of toll-like receptor (TLR) signaling is a key driver of immunopathology following infection by viruses. We found that severely ill COVID-19 patients in the Intensive Care Unit (ICU) display hallmarks of such hyper-stimulation with abundant agonists of nucleic acid-sensing TLRs present in their blood and lungs. These nucleic acid-containing Damage and Pathogen Associated Molecular Patterns (DAMPs/PAMPs) can be depleted using nucleic acid-binding microfibers to limit the patient samples' ability to hyperactivate such innate immune receptors. Single-cell RNA-sequencing revealed that CD16+ monocytes from deceased but not recovered ICU patients exhibit a TLR-tolerant phenotype and a deficient anti-viral response after ex vivo TLR stimulation. Plasma proteomics confirmed such myeloid hyperactivation and revealed DAMP/PAMP carrier consumption in deceased patients. Treatment of these COVID-19 patient samples with MnO nanoparticles effectively neutralizes TLR activation by the abundant nucleic acid-containing DAMPs/PAMPs present in their lungs and blood. Finally, MnO nanoscavenger treatment limits the ability of DAMPs/PAMPs to induce TLR tolerance in monocytes. Thus, treatment with microfiber- or nanoparticle-based DAMP/PAMP scavengers may prove useful for limiting SARS-CoV-2 induced hyperinflammation, preventing monocytic TLR tolerance, and improving outcomes in severely ill COVID-19 patients.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1016/j.biomaterials.2022.121393

Publication Info

Naqvi, Ibtehaj, Nicholas Giroux, Lyra Olson, Sarah Ahn Morrison, Telmo Llanga, Tolu O Akinade, Yuefei Zhu, Yiling Zhong, et al. (2022). DAMPs/PAMPs induce monocytic TLR activation and tolerance in COVID-19 patients; nucleic acid binding scavengers can counteract such TLR agonists. Biomaterials, 283. p. 121393. 10.1016/j.biomaterials.2022.121393 Retrieved from https://hdl.handle.net/10161/31494.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Que

Loretta Georgina Que

Professor of Medicine

My research interests focus on studying the role of nitric oxide and related enzymes in the pathogenesis of lung disease, specifically that caused by nitrosative/oxidative stress. Proposed studies are performed in cell culture and applied to animal models of disease, then examined in human disease where relevant. It is our hope that by better understanding the role of NO and reactive nitrogen species in mediating inflammation, and regulating cell signaling, that we will not only help to unravel the basic mechanisms of NO related lung disease, but also provide a rationale for targeted therapeutic use of NO.


Key words: nitrosative defense, lung injury, nitric oxide

Kraft

Bryan David Kraft

Adjunct Assistant Professor in the Department of Medicine

Dr. Kraft has a wide variety of clinical and research interests, including sepsis, pneumonia, and acute respiratory distress syndrome (ARDS), and has special expertise in rare lung diseases such as pulmonary fibrosis and pulmonary alveolar proteinosis (PAP). PAP can be congenital, hereditary, autoimmune, or due to occupational exposures (e.g. dusts, fibers, silica).

Dr. Kraft performs whole lung lavage (WLL) at Duke in a state-of-the art hyperbaric chamber within the Duke Center for Hyperbaric Medicine and Environmental Physiology. Performing WLL with hyperbaric oxygen (when necessary) augments oxygen delivery during the procedure, meaning both lungs can be lavaged on the same day, during a single episode of anesthesia.

Dr. Kraft’s research laboratory is devoted to understanding mechanisms of acute lung injury resolution, and uses translational models and clinical patient samples to identify novel pathways of recovery. Dr. Kraft is also an active investigator in clinical trials to develop new therapies for patients with lung diseases.

 

Shen

Xiling Shen

Adjunct Professor in the Department of Pathology

Dr. Shen’s research interests lie at precision medicine and systems biology. His lab integrates engineering, computational and biological techniques to study cancer, stem cells, microbiota and the nervous system in the gut. This multidisciplinary work has been instrumental in initiating several translational clinical trials in precision therapy. He is the director of the Woo Center for Big Data and Precision Health (DAP) and a core member of the Center for Genomics and Computational Biology (GCB).

Nair

Smita K Nair

Professor in Surgery

I have 22 years of experience in the field of cancer vaccines and immunotherapy and I am an accomplished T cell immunologist. Laboratory website:
https://surgery.duke.edu/immunology-inflammation-immunotherapy-laboratory

Current projects in the Nair Laboratory:
1] Dendritic cell vaccines using tumor-antigen encoding RNA (mRNA, total tumor RNA, amplified tumor mRNA)
2] Local immune receptor modulation using mRNA that encodes for antibodies, receptor-ligands, cytokines, chemokines and toll-like receptors (current target list: CTLA4, GITR, PD1, TIM3, LAG3, OX40 and 41BB)
3] Combination therapies for cancer: cytotoxic therapy (radiation, chemo and oncolytic poliovirus therapy) with dendritic cell-based vaccines and immune checkpoint blockade
4] Adoptive T cell therapy using tumor RNA-transfected dendritic cells to expand tumor-specific T cells ex vivo
5] Adoptive T cell therapy using PSMA CAR (chimeric antigen receptor) RNA-transfected T cells
6] Direct injection of tumor antigen encoding RNA (targeting antigens to dendric cells in vivo using nanoparticles and aptamers)

Sullenger

Bruce Alan Sullenger

Joseph W. and Dorothy W. Beard Distinguished Professor of Experimental Surgery

The main focus of my translational research laboratory is to develop RNA based therapeutic agents for the potential treatment of a range of diseases. To this end, we have and will continue to take advantage of the fact that RNA is not just a passive carrier of genetic instructions inside of cells during the conversion of information from DNA to RNA to protein. Rather, RNA is an extremely versatile biological macromolecule. Certian RNAs can bind to specific protiens with high affinities, while others can for catalytic centers and perform enzymatic reactions. These facets of RNA coupled with the ease with which RNA can be manipulated in vitro make it a very powerful and unique therapeutic agent whose potential is largely untapped. Durring our endeavors, we plan to work closely with the members of the Molecular Therapeutics program as well as other faculty at the Duke University Medical Center to expedite the development and testing of these therapeutics.

The specific aims of my laboratory are:

1. To isolate and characterize RNA and DNA aptamers which block therapeutically relavent proteins such as those involved in cardiovascular diseases and immune modulation.

2. To develop RNA-based tumor targeting strategies for delivering siRNAs and miRNAs to tumor cells.

3. To reprogram cells using mRNA delivery.

4. To explore novel methods to control inflammation.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.