Astrocytes refine cortical connectivity at dendritic spines.
Date
2014-12-17
Editors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
During cortical synaptic development, thalamic axons must establish synaptic connections despite the presence of the more abundant intracortical projections. How thalamocortical synapses are formed and maintained in this competitive environment is unknown. Here, we show that astrocyte-secreted protein hevin is required for normal thalamocortical synaptic connectivity in the mouse cortex. Absence of hevin results in a profound, long-lasting reduction in thalamocortical synapses accompanied by a transient increase in intracortical excitatory connections. Three-dimensional reconstructions of cortical neurons from serial section electron microscopy (ssEM) revealed that, during early postnatal development, dendritic spines often receive multiple excitatory inputs. Immuno-EM and confocal analyses revealed that majority of the spines with multiple excitatory contacts (SMECs) receive simultaneous thalamic and cortical inputs. Proportion of SMECs diminishes as the brain develops, but SMECs remain abundant in Hevin-null mice. These findings reveal that, through secretion of hevin, astrocytes control an important developmental synaptic refinement process at dendritic spines.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Risher, WC, S Patel, IH Kim, A Uezu, S Bhagat, DK Wilton, L Pilaz, J Singh Alvarado, et al. (2014). Astrocytes refine cortical connectivity at dendritic spines. Elife, 3. 10.7554/eLife.04047 Retrieved from https://hdl.handle.net/10161/9362.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Akiyoshi Uezu

Debra Lynn Silver
How is the brain assembled and sculpted during embryonic development? Addressing this question has enormous implications for understanding neurodevelopmental disorders affecting brain size and function. In evolutionary terms, our newest brain structure is the cerebral cortex, which drives higher cognitive capacities. The overall mission of my research lab is to elucidate genetic and cellular mechanisms controlling cortical development and contributing to neurodevelopmental pathologies and brain evolution. We study neural progenitors, essential cells which generate neurons and are the root of brain development. We are guided by the premise that the same mechanisms at play during normal development were co-opted during evolution and when dysregulated, can cause neurodevelopmental disease.
My research program employs a multifaceted strategy to bridge developmental neurobiology, RNA biology, and evolution. 1) We investigate how cell fates are specified, by studying how progenitor divisions influence development and disease. 2) We study diverse layers of post-transcriptional regulation in neural progenitors. We investigate RNA binding proteins implicated in development and neurological disease. Using live imaging, we also investigate how sub-cellular control of mRNA localization and translation influences neural progenitors. 3) A parallel research focus is to understand how human-specific genetic changes influence species-specific brain development. Our goal is to integrate our efforts across these three major lines of research to understand the intricacies controlling brain development.

Nicole Calakos
We all know that as part of our daily lives we are constantly interacting with our environment - learning, adapting, establishing new memories and habits, and for better or for worse, forgetting as well. At the cellular level, these processes can be encoded by changes in the strength of synaptic transmission between neurons. The process by which neuronal connections change in response to experience is known as “synaptic plasticity” and this process is a major interest of our laboratory. Our goals are to understand the molecular mechanisms for synaptic plasticity and identify when these processes have gone awry in neurological diseases. In doing so, we will establish the necessary framework to target these processes for therapeutic interventions; potentially identifying novel and improved treatment options.
We focus these interests on the striatal circuitry of the basal ganglia. The striatum is a key entry point for cortical information into the basal ganglia. The basal ganglia are involved in a wide variety of behaviors because they are critical for our movement, including the learning of motor routines and when to call them into action. Disorders in this process have wide ranging manifestations and substantially contribute to diseases like Parkinson’s disease, OCD, dystonia, Tourette’s and addictive behavior.
Our lab has pioneered a number of molecular and circuit-cracking methodologies that have provided new views into the workings of the striatal circuitry and its plasticity rules. Our lab has deep expertise in electrophysiology and optical physiology (two photon calcium imaging) and state-of-the-art molecular genetic mouse modeling techniques. Yet, our insights are further amplified by the highly collaborative approach we have with colleagues at Duke and beyond.
To get a better view of how pathway balance in basal ganglia circuitry may be affected, our lab has developed tools and approaches that make it possible to study the function of striatal medium spiny neurons in the direct and indirect pathways simultaneously in living tissue (Shuen et al., 2008; Ade et al., 2011, O’Hare and Ade et al., 2016). We use them to identify functional differences between these two types of medium spiny neurons and their role in normal adaptive plasticity and disease processes.
In habit, we identified circuit predictors of behavior. These include some classic expectations for mechanisms of plasticity such as increased firing activity, but also some surprises, like finding shifts in the timing of firing between these two cell types (O’Hare and Ade et al., 2016) and that a key coordinator is an interneuron (O’Hare et al., eLife 2017).
In disease settings, we leverage the Sapap3 KO model to understand what causes repetitive, self-injurious behavior and anxiety-like behaviors (“OCD-like”). We find a central role for striatal group 1 metabotropic glutamate receptor overactivity (Ade et al., Biol. Psych. 2016). By developing a unique high-throughput screening assay for an inherited cause of the movement disorder, dystonia, we came to recognize that multiple forms of this disease were united by a common defect in signaling by the proteostasis pathway known as the “integrated stress response” or ISR (also eIF2alpha phosphorylation) (Rittiner and Caffall et al., Neuron 2016).
Currently, ISR research in the lab has markedly expanded to address both its basic mechanisms (Helseth and Hernandez-Martinez et al., Science 2021) and its translational potential (Caffall et al., Sci. Transl. Med. 2021) for dystonia, Parkinson’s and other brain diseases.

Scott Haydn Soderling

Cagla Eroglu
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.