Noninvasive measurement of tissue blood oxygenation with Cerenkov imaging during therapeutic radiation delivery

Loading...
Thumbnail Image

Date

2017-08-15

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


views
240
downloads

Citation Stats

Abstract

© 2017 Optical Society of America. Tumor tissue oxygenation significantly affects the outcome of radiotherapy. Real-time monitoring of tumor hypoxia is highly desirable for effective radiotherapy, and is the basis for improved treatment because hypoxic tumor cells are more resistant to radiation damage than fully oxygenated cells. We propose to use Cerenkov imaging to monitor tumor hypoxia by means of tissue blood oxygenation without the need for any exogenous contrast agent. Using a rodent hypoxia model, we demonstrate that Cerenkov imaging can be used as a noninvasive and noncontact method to measure tissue blood oxygenation level during radiation delivery. The data from Cerenkov imaging were validated using near infrared spectrometry methods. The results demonstrate the feasibility of using Cerenkov imaging to monitor tumor hypoxia during therapeutic radiation delivery.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1364/OL.42.003101

Publication Info

Zhang, Xiaofeng, Sai Kit Lam, Gregory Palmer, Shiva Das, Mark Oldham and Mark Dewhirst (2017). Noninvasive measurement of tissue blood oxygenation with Cerenkov imaging during therapeutic radiation delivery. Optics Letters, 42(16). pp. 3101–3104. 10.1364/OL.42.003101 Retrieved from https://hdl.handle.net/10161/15411.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Palmer

Gregory M. Palmer

Professor of Radiation Oncology

Greg Palmer obtained his B.S. in Biomedical Engineering from Marquette University in 2000, after which he obtained his Ph.D. in BME from the University of Wisconsin, Madison. He is currently an Associate Professor in the Department of Radiation Oncology, Cancer Biology Division at Duke University Medical Center. His primary research focus has been identifying and exploiting the changes in absorption, scattering, and fluorescence properties of tissue associated with cancer progression and therapeutic response. To this end he has implemented a model-based approach for extracting absorber and scatterer properties from diffuse reflectance and fluorescence measurements. More recently he has developed quantitative imaging methodologies for intravital microscopy to characterize tumor functional and molecular response to radiation and chemotherapy. His awards have included the Jack Fowler Award from the Radiation Research Society.

Laboratory Website:
https://radonc.duke.edu/research-education/research-labs/radiation-and-cancer-biology/palmer-lab

Shiva Kumar Das

Adjunct Professor in the Department of Radiation Oncology

Intensity Modulated Radiotherapy optimization. Functional Image-guided radiotherapy (PET, SPECT). Modeling of Radiation-induced normal tissue complications (lung, cardiac) using neural nets, MART, self organizing maps, etc. Optimal selection of beam orientations for radiotherapy. Hyperthermia modeling.

Current Funded Grants:
NCI P01 CA042745-19: Hyperthermia and Perfusion Effects in Cancer Therapy Project 2: Real Time Modeling and Control Using Finite Elements and MRI (Program Director).
NCI 1R01 CA115748-01A1: Accurate Prediction of Cardiac and Lung Radiation Injury (Principal Investigator).
Varian Medical Systems: Incorporation of Functional Image-guidance in Radiotherapy Planning (Principal Investigator).

Graduate School Teaching:
MP322: Advanced Photon Beam Radiation Therapy Planning (Fall Semester)

Postdoctoral Research Associates (Past and Current):
Alan Baydush, Ph.D.
Shifeng Chen, Ph.D.
Kung-Shan Cheng, Ph.D.
Sarah McGuire, Ph.D.
Vadim Stakhursky, Ph.D.

Oldham

Mark Oldham

Professor of Radiation Oncology

Dr Oldham is the Director of the Duke Medical Physics MS/PhD Graduate Program, and Professor in the Department of Radiation Oncology, with a secondary appointment in the Physics Department at Duke. 

Main current research interests include: FLASH radiation therapy, exploring FLASH mechanisms utilizing the Duke High Intensity Gamma Source (HIGS), a nuclear research accelerator on the Duke campus.  Recent work selected for best in Physics at the annual AAPM meeting.  Radiation and Immunotherapy utilizing mini-grids. Radiation Therapy Enhanced by Cherenkov photo-Activation (RECA) and Comprehensive 3D dosimetry.

Dr Oldham has patented and published on several novel radiation treatment techniques (including XPACT and RECA - Radiotherapy Enhanced by Cherenkov photo-Activation) with exiting potential to invoke systemic anti-cancer immunogenic response.  A phase I clinical trial of XPACT is underway.  The lab has pioneered novel pre-clinical treatment capabilities including mini-beam grids, and ultra-high-resolution IMRT.  The lab has also developed novel optical imaging techniques for high-resolution 3D imaging of vascular networks and fluorescent gene expression in un-sectioned tissue samples.

Dewhirst

Mark Wesley Dewhirst

Gustavo S. Montana Distinguished Professor Emeritus of Radiation Oncology

Mark W. Dewhirst, DVM, PhD is the Gustavo S. Montana Professor of Radiation Oncology and Vice Director for Basic Science in the Duke Cancer Institute. Dr. Dewhirst has research interests in tumor hypoxia, angiogenesis, hyperthermia and drug transport. He has spent 30 years studying causes of tumor hypoxia and the use of hyperthermia to treat cancer. In collaboration with Professor David Needham in the Pratt School of Engineering, he has developed a novel thermally sensitive drug carrying liposome that has been successfully translated to human clinical trials. He has utilized the thermal characteristics of this liposome to develop an MR imageable form that can accurately reflect drug concentrations in tumors, which then is related to the extent of anti-tumor effect in pre-clinical models. This property has been widely used by other investigators, world-wide, particularly in the area of high intensity focused ultrasound, where it would be possible to literally paint drug to a target zone and visualize this process in real time, during heating. For his work in this area, Dr. Dewhirst was named a Fellow in the AAAS. Dr. Dewhirst has well over 500 peer-reviewed publications, book chapters and reviews, with >20,000 citations and an H-index of 73. He has given named lectures at the University of Western Ontario, Thomas Jefferson University and the New Zealand Cancer Society. He was awarded the Failla Medal and Lecture at the Radiation Research Society in 2008, the Eugene Robinson award for excellence hyperthermia research in 1992 and a similar award from the European Society for Hyperthermic Oncology in 2009. He was named a fellow of ASTRO in 2009 and was awarded the prestigious Gold Medal from the same society in 2012. He is a Senior Editor of Cancer Research and Editor-in-Chief of the International Journal of Hyperthermia. He has mentored 24 graduate students, and many postdoctoral fellows, residents, junior faculty and medical students. He has been particularly skillful in assisting those he has mentored to obtain DOD and NIH fellowships, K awards and first R01 grants. His skill in mentoring has been recognized by the Duke Comprehensive Cancer Center, the Medical Physics Graduate Training programs and the School of Medicine, where he has received “Mentor of the Year” awards. In 2011 he was selected to become the first Associate Dean of Faculty Mentoring in the Duke School of Medicine. In this position, he is implementing a comprehensive program to enhance success in obtaining NIH funding. He graduated from the University of Arizona in 1971 with a degree in Chemistry and Colorado State University in 1975 and 1979 with DVM and PhD degrees, respectively.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.