Glycosylation of gigaxonin regulates intermediate filaments: Novel molecular insights into giant axonal neuropathy: supplemental information
Date
2019-01-26
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Gigaxonin (also known as KLHL16) is an E3 ligase adaptor protein that promotes the ubiquitination and degradation of intermediate filament (IF) proteins. Mutations in human gigaxonin cause the fatal neurodegenerative disease giant axonal neuropathy (GAN), in which IF proteins accumulate and aggregate in axons throughout the nervous system, impairing neuronal function and viability. Despite this pathophysiological significance, the upstream regulation and downstream effects of normal and aberrant gigaxonin function remain incompletely understood. Here, we report that gigaxonin is modified by O-linked-beta-N-acetylglucosamine (O-GlcNAc), a prevalent form of intracellular glycosylation, in a nutrient- and growth factor-dependent manner. Mass spectrometry analyses of human gigaxonin revealed nine candidate sites of O-GlcNAcylation, two of which - serine 272 and threonine 277 - are required for its ability to mediate IF turnover in novel gigaxonin-deficient human cell models that we created. Taken together, these results suggest that nutrient-responsive gigaxonin O-GlcNAcylation forms a regulatory link between metabolism and IF proteostasis. Our work may have significant implications for understanding the non-genetic modifiers of GAN phenotypes and for the optimization of gene therapy for this disease.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
CHEN, PO-HAN, Timothy Smith, Jimin Hu, Samuel Pan, Alexander Smith, Annie Lu, Jen-Tsan Chi, Michael Boyce, et al. (2019). Glycosylation of gigaxonin regulates intermediate filaments: Novel molecular insights into giant axonal neuropathy: supplemental information. 10.1101/530303 Retrieved from https://hdl.handle.net/10161/19685.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.