The association of accelerated epigenetic age with all-cause mortality in cardiac catheterization patients as mediated by vascular and cardiometabolic outcomes.

Abstract

Background

Epigenetic age is a DNA methylation-based biomarker of aging that is accurate across the lifespan and a range of cell types. The difference between epigenetic age and chronological age, termed age acceleration (AA), is a strong predictor of lifespan and healthspan. The predictive capabilities of AA for all-cause mortality have been evaluated in the general population; however, its utility is less well evaluated in those with chronic conditions. Additionally, the pathophysiologic pathways whereby AA predicts mortality are unclear. We hypothesized that AA predicts mortality in individuals with underlying cardiovascular disease; and the association between AA and mortality is mediated, in part, by vascular and cardiometabolic measures.

Methods

We evaluated 562 participants in an urban, three-county area of central North Carolina from the CATHGEN cohort, all of whom received a cardiac catheterization procedure. We analyzed three AA biomarkers, Horvath epigenetic age acceleration (HAA), phenotypic age acceleration (PhenoAA), and Grim age acceleration (GrimAA), by Cox regression models, to assess whether AAs were associated with all-cause mortality. We also evaluated if these associations were mediated by vascular and cardiometabolic outcomes, including left ventricular ejection fraction (LVEF), blood cholesterol concentrations, angiopoietin-2 (ANG2) protein concentration, peripheral artery disease, coronary artery disease, diabetes, and hypertension. The total effect, direct effect, indirect effect, and percentage mediated were estimated using pathway mediation tests with a regression adjustment approach.

Results

PhenoAA (HR = 1.05, P < 0.0001), GrimAA (HR = 1.10, P < 0.0001) and HAA (HR = 1.03, P = 0.01) were all associated with all-cause mortality. The association of mortality and PhenoAA was partially mediated by ANG2, a marker of vascular function (19.8%, P = 0.016), and by diabetes (8.2%, P = 0.043). The GrimAA-mortality association was mediated by ANG2 (12.3%, P = 0.014), and showed weaker evidence for mediation by LVEF (5.3%, P = 0.065).

Conclusions

Epigenetic age acceleration remains strongly predictive of mortality even in individuals already burdened with cardiovascular disease. Mortality associations were mediated by ANG2, which regulates endothelial permeability and angiogenic functions, suggesting that specific vascular pathophysiology may link accelerated epigenetic aging with increased mortality risks.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1186/s13148-022-01380-x

Publication Info

Jiang, Rong, Elizabeth R Hauser, Lydia Coulter Kwee, Svati H Shah, Jessica A Regan, Janet L Huebner, Virginia B Kraus, William E Kraus, et al. (2022). The association of accelerated epigenetic age with all-cause mortality in cardiac catheterization patients as mediated by vascular and cardiometabolic outcomes. Clinical epigenetics, 14(1). p. 165. 10.1186/s13148-022-01380-x Retrieved from https://hdl.handle.net/10161/30087.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Jiang

Rong Jiang

Assistant Professor in Head and Neck Surgery & Communication Sciences
Regan

Jessica Regan

House Staff

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.