MRI-Based Deep Learning Segmentation and Radiomics of Sarcoma in Mice.

Loading...
Thumbnail Image

Date

2020-03

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

70
views
23
downloads

Citation Stats

Abstract

Small-animal imaging is an essential tool that provides noninvasive, longitudinal insight into novel cancer therapies. However, considerable variability in image analysis techniques can lead to inconsistent results. We have developed quantitative imaging for application in the preclinical arm of a coclinical trial by using a genetically engineered mouse model of soft tissue sarcoma. Magnetic resonance imaging (MRI) images were acquired 1 day before and 1 week after radiation therapy. After the second MRI, the primary tumor was surgically removed by amputating the tumor-bearing hind limb, and mice were followed for up to 6 months. An automatic analysis pipeline was used for multicontrast MRI data using a convolutional neural network for tumor segmentation followed by radiomics analysis. We then calculated radiomics features for the tumor, the peritumoral area, and the 2 combined. The first radiomics analysis focused on features most indicative of radiation therapy effects; the second radiomics analysis looked for features that might predict primary tumor recurrence. The segmentation results indicated that Dice scores were similar when using multicontrast versus single T2-weighted data (0.863 vs 0.861). One week post RT, larger tumor volumes were measured, and radiomics analysis showed greater heterogeneity. In the tumor and peritumoral area, radiomics features were predictive of primary tumor recurrence (AUC: 0.79). We have created an image processing pipeline for high-throughput, reduced-bias segmentation of multiparametric tumor MRI data and radiomics analysis, to better our understanding of preclinical imaging and the insights it provides when studying new cancer therapies.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.18383/j.tom.2019.00021

Publication Info

Holbrook, MD, SJ Blocker, YM Mowery, A Badea, Y Qi, ES Xu, DG Kirsch, GA Johnson, et al. (2020). MRI-Based Deep Learning Segmentation and Radiomics of Sarcoma in Mice. Tomography (Ann Arbor, Mich.), 6(1). pp. 23–33. 10.18383/j.tom.2019.00021 Retrieved from https://hdl.handle.net/10161/24250.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.