High-resolution reconstruction of fluorescent inclusions in mouse thorax using anatomically guided sampling and parallel Monte Carlo computing.
Date
2011-09-01
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
We present a method for high-resolution reconstruction of fluorescent images of the mouse thorax. It features an anatomically guided sampling method to retrospectively eliminate problematic data and a parallel Monte Carlo software package to compute the Jacobian matrix for the inverse problem. The proposed method was capable of resolving microliter-sized femtomole amount of quantum dot inclusions closely located in the middle of the mouse thorax. The reconstruction was verified against co-registered micro-CT data. Using the proposed method, the new system achieved significantly higher resolution and sensitivity compared to our previous system consisting of the same hardware. This method can be applied to any system utilizing similar imaging principles to improve imaging performance.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Zhang, X, C Badea, G Hood, A Wetzel, Y Qi, J Stiles and GA Johnson (2011). High-resolution reconstruction of fluorescent inclusions in mouse thorax using anatomically guided sampling and parallel Monte Carlo computing. Biomed Opt Express, 2(9). pp. 2449–2460. 10.1364/BOE.2.002449 Retrieved from https://hdl.handle.net/10161/11254.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Cristian Tudorel Badea
- Our lab's research focus lies primarily in developing novel quantitative imaging systems, reconstruction algorithms and analysis methods. My major expertise is in preclinical CT.
- Currently, we are particularly interested in developing novel strategies for spectral CT imaging using nanoparticle-based contrast agents for theranostics (i.e. therapy and diagnostics).
- We are also engaged in developing new approaches for multidimensional CT image reconstruction suitable to address difficult undersampling cases in cardiac and spectral CT (dual energy and photon counting) using compressed sensing and/or deep learning.
- We are involved in co-clinical cancer trials and I have served as the Principal Investigator on the U24 Duke Preclinical Research Resources for Quantitative Imaging Biomarkers part of the NCI Co-Clinical Imaging Research Resources Program network (CIRP).
G. Allan Johnson
Dr. Johnson is the Charles E. Putman University Professor of Radiology, Professor of Physics, and Biomedical Engineering, and Director of the Duke Center for In Vivo Microscopy (CIVM). The CIVM is an NIH/NIBIB national Biomedical Technology Resource Center with a mission to develop novel technologies for preclinical imaging (basic sciences) and apply the technologies to critical biomedical questions. Dr. Johnson was one of the first researchers to bring Paul Lauterbur's vision of magnetic resonance (MR) microscopy to practice as described in his paper, "Nuclear magnetic resonance imaging at microscopic resolution" (J Magn Reson 68:129-137, 1986). Dr. Johnson is involved in both the engineering physics required to extend the resolution of MR imaging and in a broad range of applications in the basic sciences.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.