In vivo and ex vivo epi-mode pump-probe imaging of melanin and microvasculature.
Date
2011-06-01
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
We performed epi-mode pump-probe imaging of melanin in excised human pigmented lesions and both hemoglobin and melanin in live xenograft mouse melanoma models to depths greater than 100 µm. Eumelanin and pheomelanin images, which have been previously demonstrated to differentiate melanoma from benign lesions, were acquired at the dermal-epidermal junction with cellular resolution and modest optical powers (down to 15 mW). We imaged dermal microvasculature with the same wavelengths, allowing simultaneous acquisition of melanin, hemoglobin and multiphoton autofluorescence images. Molecular pump-probe imaging of melanocytes, skin structure and microvessels allows comprehensive, non-invasive characterization of pigmented lesions.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Matthews, Thomas E, Jesse W Wilson, Simone Degan, Mary Jane Simpson, Jane Y Jin, Jennifer Y Zhang and Warren S Warren (2011). In vivo and ex vivo epi-mode pump-probe imaging of melanin and microvasculature. Biomed Opt Express, 2(6). pp. 1576–1583. 10.1364/BOE.2.001576 Retrieved from https://hdl.handle.net/10161/15168.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Jennifer Yunyan Zhang
Epidermis of the skin constitutes the largest organ and the outer most barrier of the body. It is one of the few organs that undergo lifelong self-renewal through a tight balance of cell growth, differentiation, and programmed cell death. Deregulation of this balance is manifested in many diseases, including various immune diseases and cancer.
Our lab is focused on 3 interrelated topics:
1. Gene regulation of epithelial cell proliferation and differentiation
Using regenerated human skin tissues and murine genetic models, we have demonstrated important functions NF-kB and AP-1 gene regulators in epidermal cell growth and differentiation. Currently, our efforts are focused on understating how loss-of-function of CYLD, a deubiquitinase and tumor suppressor, leads to the development of hair follicle defects, skin inflammation, and cancer. Specifically, we want to determine how CYLD integrates NF-kB, AP1, Myc, and other transcription factors to control epidermal cell growth and lineage differentiation.
De novo skin regeneration is life-saving procedure for severely burned patients and lethal genetic skin diseases such as epidermal bullosa. An additional aspect of our study is to improve new skin regeneration techniques and to create experimental skin disease models with gene transduced keratinocytes, as illustrated below.
2. Keratinocytes as instigators of inflammatory responses
Keratinocytes are constantly challenged by external insults, as well as immune cells. Disarray of the crosstalk between keratinocytes and immune cells underlies various immune diseases, including dermatitis, psoriasis, and cutaneous graft-versus-host disease (GVHD). GVHD is a common complication and the leading cause of non-relapse mortality among patients after receiving allogenic hematopoietic stem cell transplantation. The skin is the most commonly affected organ in both the acute and chronic forms of this disease. Treatment options for GVHD are limited and the current standard therapy is high dose systemic corticosteroid which is itself associated with significant morbidity. Our goal is to understand how keratinocytes contribute to the progression of GVHD, and may therefore be targeted to mitigate the disease.
3. Ubiquitination enzymes in melanoma
Melanoma most lethal and difficult to treat skin cancer. In the recent years, BRAF/MEK-targeted therapies have produced exciting results, but they suffer from short duration. Our goal is to uncover novel mechanisms crucial for melanoma malignancy. Specifically, we want to understand how ubiquitination enzymes contribute to melanoma growth. Previously, we have demonstrated that CYLD inhibits melanoma growth through suppression of JNK/AP1 and b1-integrin signaling pathways. In contrast, UBE2N, a K63-Ubiquitin conjusage, promotes melanoma growth in part through activation of the MEK/FRA/SOX10 signaling cascade. Currently, our efforts are focused on understanding how UBE2N and other ubiquitin enzymes regulate the MAPK signaling pathway and whether they can be targeted for melanoma therapy.
Warren S. Warren
Our work focuses on the design and application of what might best be called novel pulsed techniques, using controlled radiation fields to alter dynamics. The heart of the work is chemical physics, and most of what we do is ultrafast laser spectroscopy or nuclear magnetic resonance. It generally involves an intimate mixture of theory and experiment: recent publications are roughly an equal mix of pencil- and-paper theory, computer calculations with our workstations, and experiments. Collaborations also play an important role, particularly for medical applications.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.