Time-dependent transport through molecular junctions.

dc.contributor.author

Ke, SH

dc.contributor.author

Liu, R

dc.contributor.author

Yang, W

dc.contributor.author

Baranger, HU

dc.coverage.spatial

United States

dc.date.accessioned

2011-04-15T16:46:52Z

dc.date.issued

2010-06-21

dc.description.abstract

We investigate transport properties of molecular junctions under two types of bias--a short time pulse or an ac bias--by combining a solution for Green's functions in the time domain with electronic structure information coming from ab initio density functional calculations. We find that the short time response depends on lead structure, bias voltage, and barrier heights both at the molecule-lead contacts and within molecules. Under a low frequency ac bias, the electron flow either tracks or leads the bias signal (resistive or capacitive response) depending on whether the junction is perfectly conducting or not. For high frequency, the current lags the bias signal due to the kinetic inductance. The transition frequency is an intrinsic property of the junctions.

dc.description.version

Version of Record

dc.identifier

http://www.ncbi.nlm.nih.gov/pubmed/20572687

dc.identifier.eissn

1089-7690

dc.identifier.uri

https://hdl.handle.net/10161/3356

dc.language

eng

dc.language.iso

en_US

dc.publisher

AIP Publishing

dc.relation.ispartof

J Chem Phys

dc.relation.isversionof

10.1063/1.3435351

dc.relation.journal

Journal of Chemical Physics

dc.title

Time-dependent transport through molecular junctions.

dc.type

Journal article

duke.contributor.orcid

Baranger, HU|0000-0002-1458-2756

duke.date.pubdate

2010-6-21

duke.description.issue

23

duke.description.volume

132

pubs.author-url

http://www.ncbi.nlm.nih.gov/pubmed/20572687

pubs.begin-page

234105

pubs.issue

23

pubs.organisational-group

Chemistry

pubs.organisational-group

Duke

pubs.organisational-group

Physics

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.publication-status

Published

pubs.volume

132

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
279032000008.pdf
Size:
1.48 MB
Format:
Adobe Portable Document Format