Transportation as a barrier to colorectal cancer care.

Abstract

Background

Transportation barriers limit access to cancer care services and contribute to suboptimal clinical outcomes. Our objectives were to describe the frequency of Veterans reporting and the factors associated with transportation barriers to or from colorectal cancer (CRC) care visits.

Methods

Between November 2015 and September 2016, Veterans with incident stage I, II, or III CRC completed a mailed survey to assess perceived barriers to recommended care. Participants who reported difficulty with transportation to or from CRC care appointments were categorized as experiencing transportation barriers. We assessed pairwise correlations between transportation barriers, transportation-related factors (e.g., mode of travel), and chaotic lifestyle (e.g., predictability of schedules), and used logistic regression to examine the association between the reporting of transportation difficulties, distance traveled to the nearest Veterans Affairs (VA) facility, and life chaos.

Results

Of the 115 Veterans included in this analysis, 18% reported experiencing transportation barriers. Distance to the VA was not strongly correlated with the reporting of transportation barriers (Spearman's ρ = 0.12, p = 0.19), but chaotic lifestyle was both positively and significantly correlated with experiencing transportation barriers (Spearman's ρ = 0.22, p = 0.02). Results from the logistic regression model modestly supported the findings from the pairwise correlations, but were not statistically significant.

Conclusions

Transportation is an important barrier to or from CRC care visits, especially among Veterans who experience greater life chaos. Identifying Veterans who experience chaotic lifestyles would allow for timely engagement in behavioral interventions (e.g., organizational skills training) and with support services (e.g., patient navigation).

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1186/s12913-021-06339-x

Publication Info

Jazowski, Shelley A, Isabelle P Sico, Jennifer H Lindquist, Valerie A Smith, Hayden B Bosworth, Susanne Danus, Dawn Provenzale, Michael J Kelley, et al. (2021). Transportation as a barrier to colorectal cancer care. BMC health services research, 21(1). p. 332. 10.1186/s12913-021-06339-x Retrieved from https://hdl.handle.net/10161/29812.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Smith

Valerie A. Smith

Associate Professor in Population Health Sciences

Valerie A. Smith, DrPH, is an Associate Professor in the Duke University Department of Population Health Sciences and Senior Research Director of the Biostatistics Core at the Durham Veterans Affairs Medical Center's Center of Innovation. Her methodological research interests include methods for semicontinuous and zero-inflated data, cost and utilization modeling, causal inference methods, observational study design, and longitudinal data analysis.

Dr. Smith works largely in collaboration with a multidisciplinary team of researchers, with a focus on health policy interventions, health care utilization and expenditure patterns, program and policy evaluation, bariatric surgery and obesity treatment evaluation, aging, and caregiving.

Areas of expertise: Biostatistics, Health Services Research, Health Economics, and Health Policy

Bosworth

Hayden Barry Bosworth

Professor in Population Health Sciences

Dr. Bosworth is a health services researcher and Deputy Director of the Center of Innovation to Accelerate Discovery and Practice Transformation (ADAPT)  at the Durham VA Medical Center. He is also Vice Chair of Education and Professor of Population Health Sciences. He is also a Professor of Medicine, Psychiatry, and Nursing at Duke University Medical Center and Adjunct Professor in Health Policy and Administration at the School of Public Health at the University of North Carolina at Chapel Hill. His research interests comprise three overarching areas of research: 1) clinical research that provides knowledge for improving patients’ treatment adherence and self-management in chronic care; 2) translation research to improve access to quality of care; and 3) eliminate health care disparities. 

Dr. Bosworth is the recipient of an American Heart Association established investigator award, the 2013 VA Undersecretary Award for Outstanding Achievement in Health Services Research (The annual award is the highest honor for VA health services researchers), and a VA Senior Career Scientist Award. In terms of self-management, Dr. Bosworth has expertise developing interventions to improve health behaviors related to hypertension, coronary artery disease, and depression, and has been developing and implementing tailored patient interventions to reduce the burden of other chronic diseases. These trials focus on motivating individuals to initiate health behaviors and sustaining them long term and use members of the healthcare team, particularly pharmacists and nurses. He has been the Principal Investigator of over 30 trials resulting in over 400 peer reviewed publications and four books. This work has been or is being implemented in multiple arenas including Medicaid of North Carolina, private payers, The United Kingdom National Health System Direct, Kaiser Health care system, and the Veterans Affairs.

Areas of Expertise: Health Behavior, Health Services Research, Implementation Science, Health Measurement, and Health Policy

Kelley

Michael John Kelley

Professor of Medicine

1.     A major theme throughout my career has been the biology of and improving outcomes for patients with lung cancer.  Early publications examined the relationship between specific genetic alterations in lung cancer and clinically relevant applications including differential drug sensitivity, differentiation of metastases from second primary cancers, and application of patient-specific mutations as epitopes for immunotherapy.  Correlation of alteration of p16 with drug sensitivity led to identification of a class of CDK4 inhibitor. I served as the primary investigator or co-investigator in all of these studies.  I led a study that demonstrated that tubulin mutations are uncommon in lung cancer and described the artifactual detection of pseudogenes as the origin of a prior report claiming association of tubulin mutation with taxane sensitivity, thus correcting the scientific record. 

2.   A second area of continuing interest in lung cancer is the conduct of therapeutic and prevention clinical trials.  These trials have primarily been translation of hypotheses derived primarily from laboratory-based biological observations including the GRP autocrine growth factor in small cell lung cancer, a phase I study of a pulmonary toxin in non-small cell lung cancer, mutation-specific immunotherapy, and a putative chemopreventive agent for smokers.  More recently, I have been an active member of the Respiratory Committee of CALGB/Alliance including serving as principal investigator on a trial testing the addition of irinotecan to treatment of patients with small cell lung cancer. 

3.  Through my clinical practice, I identified a large family with the May-Hegglin anomaly, an autosomal dominant platelet condition characterized as thrombocytopenia, leukocyte inclusions, and giant platelets.  While the condition had been described in the early 1900s, the genetic basis was unknown.  I conceptualized and led a project to identify the underlying molecular basis of this frequently misdiagnosed disorder through classical genetics.  I then extended that observation to related genetic conditions (now known as MYH9-assocaited disorders) characterized by varying degrees of hematological abnormalities, hearing loss and renal disease.  Analysis of the spectrum of observed mutations and phenotypes resulted in identification of a genotype-phenotype association for the most medically significant aspects of the disorders.  Working with Dan Kiehart’s lab, we described the effect of commonly observed mutations of MYH9 on assembly of non-muscle myosin.  An animal model of the most common MYH9 mutation was created in my lab and demonstrated hematological abnormalities similar to those found in humans. 

4.  I described genetic linkage for a rare familial cancer syndrome characterized by very high penetrance of chordoma.  Subsequent linkage analysis resolved a phenotype mis-assignment and resulted in identification of germline gene duplication of the T-box gene, Brachyury in about half of affected families.  I then confirmed another groups report that a common coding region SNP of the Brachyury gene as well as additional genetic variants are associated with an increased risk for development of chordoma independent of amplification of the Brachyury gen.   To study the biology of chordoma, I established the origin of existing putative chordoma cell lines and working criteria for identification of possible new chordoma cell lines.  Using two confirmed chordoma cell lines, I screened all regulatory-approved drugs for anti-growth activity to determine whether any could be repurposed for clinical use in patients. 

5.  Beginning in 2007, I began to transition my career to a leadership position within the Department of Veterans Affairs as the National Program Director for Oncology.  This led to opportunities to utilize the vast and detailed clinical data sets of nearly 1 million patients with cancer to address questions that have been difficult to study either through randomized trials or in less robust datasets.  The use of surgery to treat early stage non-small cell lung cancer is a standard treatment for which I observed a racial disparity.  The lower rate of use of surgery among African Americans was not explained by association with comorbidity.  In another study, I described the rate of use of adjuvant chemotherapy as having increased temporally after publication of randomized trials showing a modest benefit to its use.  I showed that initially this chemotherapy was primarily carboplatin-based, despite all positive trials having used cisplatin.  Cisplatin use has subsequently increased though there is not a demonstrable improvement is survival associated with its use.  I also showed that survival overall, regardless of use of chemotherapy, has improved suggesting that the application of clinical trial data for adjuvant chemotherapy is improving outcome.  In a related study, I found that elderly patients benefit as much as younger patients from adjuvant chemotherapy.  Patients with stage III non-small cell lung cancer are frequently treated with concurrent chemoradiotherapy, for which there are two commonly used chemotherapy regimens: cisplatin-etoposide and carboplatin-paclitaxel.  I examined the outcome and toxicity of patients treated with these two regimens and found that while there was no significant difference in survival, there was more toxicity associated with cisplatin-etoposide.  This finding may impact one current clinical guideline recommendation that favors cisplatin-etoposide over carboplatin-paclitaxel.  Finally, in stage IV disease, a similar observation was made that cisplatin-based chemotherapy is associated with greater toxicity but not improved survival. 

Complete List of Published Work in MyBibliography:   http://www.ncbi.nlm.nih.gov/sites/myncbi/michael.kelley.1/bibliography/43511621/public/?sort=date&direction=descending
Zullig

Leah L Zullig

Professor in Population Health Sciences

Leah L. Zullig, PhD, MPH is a health services researcher and an implementation scientist. She is a Professor in the Duke Department of Population Health Sciences and an investigator with the Center of Innovation to Accelerate Discovery and Practice Transformation (ADAPT) at the Durham Veterans Affairs Health Care System. Dr. Zullig leads INTERACT, the Implementation Science Research Collaborative, and is co-leader of Duke Cancer Institute's cancer prevention and control program.

Dr. Zullig’s overarching research interests address three domains: improving cancer care delivery and quality; promoting cancer survivorship and chronic disease management; and improving medication adherence. Throughout these three area of foci Dr. Zullig uses an implementation science lens with the goal of providing equitable care for all by implementing evidence-based practices in a variety of health care environments. She has authored over 200 peer-reviewed publications. 

Dr. Zullig completed her BS in Health Promotion, her MPH in Public Health Administration, and her PhD in Health Policy.

Areas of expertise: Implementation Science, Health Measurement, Health Policy, Health Behavior, Telehealth, and Health Services Research


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.