Neuroimaging-based classification of PTSD using data-driven computational approaches: A multisite big data study from the ENIGMA-PGC PTSD consortium.

dc.contributor.author

Zhu, Xi

dc.contributor.author

Kim, Yoojean

dc.contributor.author

Ravid, Orren

dc.contributor.author

He, Xiaofu

dc.contributor.author

Suarez-Jimenez, Benjamin

dc.contributor.author

Zilcha-Mano, Sigal

dc.contributor.author

Lazarov, Amit

dc.contributor.author

Lee, Seonjoo

dc.contributor.author

Abdallah, Chadi G

dc.contributor.author

Angstadt, Michael

dc.contributor.author

Averill, Christopher L

dc.contributor.author

Baird, C Lexi

dc.contributor.author

Baugh, Lee A

dc.contributor.author

Blackford, Jennifer U

dc.contributor.author

Bomyea, Jessica

dc.contributor.author

Bruce, Steven E

dc.contributor.author

Bryant, Richard A

dc.contributor.author

Cao, Zhihong

dc.contributor.author

Choi, Kyle

dc.contributor.author

Cisler, Josh

dc.contributor.author

Cotton, Andrew S

dc.contributor.author

Daniels, Judith K

dc.contributor.author

Davenport, Nicholas D

dc.contributor.author

Davidson, Richard J

dc.contributor.author

DeBellis, Michael D

dc.contributor.author

Dennis, Emily L

dc.contributor.author

Densmore, Maria

dc.contributor.author

deRoon-Cassini, Terri

dc.contributor.author

Disner, Seth G

dc.contributor.author

Hage, Wissam El

dc.contributor.author

Etkin, Amit

dc.contributor.author

Fani, Negar

dc.contributor.author

Fercho, Kelene A

dc.contributor.author

Fitzgerald, Jacklynn

dc.contributor.author

Forster, Gina L

dc.contributor.author

Frijling, Jessie L

dc.contributor.author

Geuze, Elbert

dc.contributor.author

Gonenc, Atilla

dc.contributor.author

Gordon, Evan M

dc.contributor.author

Gruber, Staci

dc.contributor.author

Grupe, Daniel W

dc.contributor.author

Guenette, Jeffrey P

dc.contributor.author

Haswell, Courtney C

dc.contributor.author

Herringa, Ryan J

dc.contributor.author

Herzog, Julia

dc.contributor.author

Hofmann, David Bernd

dc.contributor.author

Hosseini, Bobak

dc.contributor.author

Hudson, Anna R

dc.contributor.author

Huggins, Ashley A

dc.contributor.author

Ipser, Jonathan C

dc.contributor.author

Jahanshad, Neda

dc.contributor.author

Jia-Richards, Meilin

dc.contributor.author

Jovanovic, Tanja

dc.contributor.author

Kaufman, Milissa L

dc.contributor.author

Kennis, Mitzy

dc.contributor.author

King, Anthony

dc.contributor.author

Kinzel, Philipp

dc.contributor.author

Koch, Saskia BJ

dc.contributor.author

Koerte, Inga K

dc.contributor.author

Koopowitz, Sheri M

dc.contributor.author

Korgaonkar, Mayuresh S

dc.contributor.author

Krystal, John H

dc.contributor.author

Lanius, Ruth

dc.contributor.author

Larson, Christine L

dc.contributor.author

Lebois, Lauren AM

dc.contributor.author

Li, Gen

dc.contributor.author

Liberzon, Israel

dc.contributor.author

Lu, Guang Ming

dc.contributor.author

Luo, Yifeng

dc.contributor.author

Magnotta, Vincent A

dc.contributor.author

Manthey, Antje

dc.contributor.author

Maron-Katz, Adi

dc.contributor.author

May, Geoffery

dc.contributor.author

McLaughlin, Katie

dc.contributor.author

Mueller, Sven C

dc.contributor.author

Nawijn, Laura

dc.contributor.author

Nelson, Steven M

dc.contributor.author

Neufeld, Richard WJ

dc.contributor.author

Nitschke, Jack B

dc.contributor.author

O'Leary, Erin M

dc.contributor.author

Olatunji, Bunmi O

dc.contributor.author

Olff, Miranda

dc.contributor.author

Peverill, Matthew

dc.contributor.author

Phan, K Luan

dc.contributor.author

Qi, Rongfeng

dc.contributor.author

Quidé, Yann

dc.contributor.author

Rektor, Ivan

dc.contributor.author

Ressler, Kerry

dc.contributor.author

Riha, Pavel

dc.contributor.author

Ross, Marisa

dc.contributor.author

Rosso, Isabelle M

dc.contributor.author

Salminen, Lauren E

dc.contributor.author

Sambrook, Kelly

dc.contributor.author

Schmahl, Christian

dc.contributor.author

Shenton, Martha E

dc.contributor.author

Sheridan, Margaret

dc.contributor.author

Shih, Chiahao

dc.contributor.author

Sicorello, Maurizio

dc.contributor.author

Sierk, Anika

dc.contributor.author

Simmons, Alan N

dc.contributor.author

Simons, Raluca M

dc.contributor.author

Simons, Jeffrey S

dc.contributor.author

Sponheim, Scott R

dc.contributor.author

Stein, Murray B

dc.contributor.author

Stein, Dan J

dc.contributor.author

Stevens, Jennifer S

dc.contributor.author

Straube, Thomas

dc.contributor.author

Sun, Delin

dc.contributor.author

Théberge, Jean

dc.contributor.author

Thompson, Paul M

dc.contributor.author

Thomopoulos, Sophia I

dc.contributor.author

van der Wee, Nic JA

dc.contributor.author

van der Werff, Steven JA

dc.contributor.author

van Erp, Theo GM

dc.contributor.author

van Rooij, Sanne JH

dc.contributor.author

van Zuiden, Mirjam

dc.contributor.author

Varkevisser, Tim

dc.contributor.author

Veltman, Dick J

dc.contributor.author

Vermeiren, Robert RJM

dc.contributor.author

Walter, Henrik

dc.contributor.author

Wang, Li

dc.contributor.author

Wang, Xin

dc.contributor.author

Weis, Carissa

dc.contributor.author

Winternitz, Sherry

dc.contributor.author

Xie, Hong

dc.contributor.author

Zhu, Ye

dc.contributor.author

Wall, Melanie

dc.contributor.author

Neria, Yuval

dc.contributor.author

Morey, Rajendra A

dc.date.accessioned

2024-07-17T17:33:15Z

dc.date.available

2024-07-17T17:33:15Z

dc.date.issued

2023-12

dc.description.abstract

Background

Recent advances in data-driven computational approaches have been helpful in devising tools to objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homogeneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess the generalizability using a large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group.

Methods

We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 1,952 diffusion-MRI. First, we identified the brain features that best distinguish individuals with PTSD from controls using traditional machine learning methods. Second, we assessed the utility of the denoising variational autoencoder (DVAE) and evaluated its classification performance. Third, we assessed the generalizability and reproducibility of both models using leave-one-site-out cross-validation procedure for each modality.

Results

We found lower performance in classifying PTSD vs. controls with data from over 20 sites (60 % test AUC for s-MRI, 59 % for rs-fMRI and 56 % for d-MRI), as compared to other studies run on single-site data. The performance increased when classifying PTSD from HC without trauma history in each modality (75 % AUC). The classification performance remained intact when applying the DVAE framework, which reduced the number of features. Finally, we found that the DVAE framework achieved better generalization to unseen datasets compared with the traditional machine learning frameworks, albeit performance was slightly above chance.

Conclusion

These results have the potential to provide a baseline classification performance for PTSD when using large scale neuroimaging datasets. Our findings show that the control group used can heavily affect classification performance. The DVAE framework provided better generalizability for the multi-site data. This may be more significant in clinical practice since the neuroimaging-based diagnostic DVAE classification models are much less site-specific, rendering them more generalizable.
dc.identifier

S1053-8119(23)00563-3

dc.identifier.issn

1053-8119

dc.identifier.issn

1095-9572

dc.identifier.uri

https://hdl.handle.net/10161/31283

dc.language

eng

dc.publisher

Elsevier BV

dc.relation.ispartof

NeuroImage

dc.relation.isversionof

10.1016/j.neuroimage.2023.120412

dc.rights.uri

https://creativecommons.org/licenses/by-nc/4.0

dc.subject

Brain

dc.subject

Humans

dc.subject

Magnetic Resonance Imaging

dc.subject

Reproducibility of Results

dc.subject

Stress Disorders, Post-Traumatic

dc.subject

Neuroimaging

dc.subject

Big Data

dc.title

Neuroimaging-based classification of PTSD using data-driven computational approaches: A multisite big data study from the ENIGMA-PGC PTSD consortium.

dc.type

Journal article

duke.contributor.orcid

Sun, Delin|0000-0003-3283-423X

pubs.begin-page

120412

pubs.organisational-group

Duke

pubs.organisational-group

School of Medicine

pubs.organisational-group

Clinical Science Departments

pubs.organisational-group

Institutes and Centers

pubs.organisational-group

Psychiatry & Behavioral Sciences

pubs.organisational-group

University Institutes and Centers

pubs.organisational-group

Duke Institute for Brain Sciences

pubs.organisational-group

Psychiatry, Child & Family Mental Health & Community Psychiatry

pubs.organisational-group

Duke-UNC Brain Imaging and Analysis Center

pubs.organisational-group

Psychiatry & Behavioral Sciences, Behavioral Medicine & Neurosciences

pubs.publication-status

Published

pubs.volume

283

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Neuroimaging-based classification of PTSD using data-driven computational approaches A multisite big data study from the ENI.pdf
Size:
1.61 MB
Format:
Adobe Portable Document Format