Structural Studies of Phospho-MurNAc-pentapeptide Translocase and Ternary Complex of a NaV C-Terminal Domain, a Fibroblast Growth Factor Homologous Factor, and Calmodulin

Loading...
Thumbnail Image

Date

2013

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

351
views
486
downloads

Abstract

Phospho-MurNAc-pentapeptide translocase (MraY) is a conserved membrane-spanning enzyme involved in the biosynthesis of bacterial cell walls. MraY generates lipid I by transferring the phospho-MurNAc-pentapeptide to the lipid carrier undecaprenyl-phosphate. MraY is a primary target for antibiotic development because it is essential in peptidoglycan synthesis and targeted by 5 classes of natural product antibiotics. The structure of this enzyme will provide insight into the catalytic mechanism and a platform for future antibiotic development. MraY genes from 19 bacteria were cloned, expressed, purified and assayed for biochemical stability. After initial crystallization screening, I found that MraY from Aquifex aeolicus (MraYAA) produced diffracting crystals. Recombinant MraYAA is functional and shows inhibition by the natural inhibitor capuramycin. After extensive optimization of crystallization conditions, we extended the resolution limit of the crystal to 3.3 Å. The crystal structure, the first structure of the polyprenyl-phosphate N-acetyl hexosamine 1-phosphate transferase (PNPT) superfamily, reveals the architecture of MraYAA and together with functional studies, allow us to identify the location of Mg2+ at the active site and the putative binding sites of both substrates. My crystallographic studies provide insights into the mechanism of how MraY attaches a building block of peptidoglycan to the carrier lipid.

Voltage-gated Na+ (NaV) channels initiate action potentials in neurons and cardiac myocytes. NaV channels are composed of a transmembrane domain responsible for voltage-dependent Na+ conduction and a cytosolic C-terminal domain (CTD) that regulates channel function through interactions with many auxiliary proteins including members of the fibroblast growth factor homologous factor (FHF) family and calmodulin (CaM). Through the collaboration between our lab and Geoffrey Pitt's lab, we report the first crystal structure of the ternary complex of the human NaV1.5 CTD, FGF13, and Ca2+-free CaM at 2.2 Å. Combined with functional experiments based on structural insights, we present a platform to understand roles of these auxiliary proteins in NaV channel regulation and the molecular basis of mutations that lead to neuronal and cardiac diseases. Furthermore, we identify a critical interaction that contributes to the specificity between individual NaV CTD isoforms and distinctive FHFs.

Department

Description

Provenance

Citation

Citation

Chung, ChihPin (2013). Structural Studies of Phospho-MurNAc-pentapeptide Translocase and Ternary Complex of a NaV C-Terminal Domain, a Fibroblast Growth Factor Homologous Factor, and Calmodulin. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/8243.

Collections


Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.