Aging-related atherosclerosis is exacerbated by arterial expression of tumor necrosis factor receptor-1: evidence from mouse models and human association studies.

Loading...
Thumbnail Image

Date

2010-07

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

1
views
10
downloads

Citation Stats

Abstract

Aging is believed to be among the most important contributors to atherosclerosis, through mechanisms that remain largely obscure. Serum levels of tumor necrosis factor (TNF) rise with aging and have been correlated with the incidence of myocardial infarction. We therefore sought to determine whether genetic variation in the TNF receptor-1 gene (TNFR1) contributes to aging-related atherosclerosis in humans and whether Tnfr1 expression aggravates aging-related atherosclerosis in mice. With 1330 subjects from a coronary angiography database, we performed a case-control association study of coronary artery disease (CAD) with 16 TNFR1 single-nucleotide polymorphisms (SNPs). Two TNFR1 SNPs significantly associated with CAD in subjects >55 years old, and this association was supported by analysis of a set of 759 independent CAD cases. In multiple linear regression analysis, accounting for TNFR1 SNP rs4149573 significantly altered the relationship between aging and CAD index among 1811 subjects from the coronary angiography database. To confirm that TNFR1 contributes to aging-dependent atherosclerosis, we grafted carotid arteries from 18- and 2-month-old wild-type (WT) and Tnfr1(-/-) mice into congenic apolipoprotein E-deficient (Apoe(-/-)) mice and harvested grafts from 1 to 7 weeks post-operatively. Aged WT arteries developed accelerated atherosclerosis associated with enhanced TNFR1 expression, enhanced macrophage recruitment, reduced smooth muscle cell proliferation and collagen content, augmented apoptosis and plaque hemorrhage. In contrast, aged Tnfr1(-/-) arteries developed atherosclerosis that was indistinguishable from that in young Tnfr1(-/-) arteries and significantly less than that observed in aged WT arteries. We conclude that TNFR1 polymorphisms associate with aging-related CAD in humans, and TNFR1 contributes to aging-dependent atherosclerosis in mice.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1093/hmg/ddq172

Publication Info

Zhang, L, JJ Connelly, K Peppel, L Brian, SH Shah, S Nelson, DR Crosslin, T Wang, et al. (2010). Aging-related atherosclerosis is exacerbated by arterial expression of tumor necrosis factor receptor-1: evidence from mouse models and human association studies. Human molecular genetics, 19(14). pp. 2754–2766. 10.1093/hmg/ddq172 Retrieved from https://hdl.handle.net/10161/31543.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Zhang

Lisheng Zhang

Assistant Professor in Medicine

My research efforts involves studying the pathogenesis of vein graft neointimal hyperplasia and atherosclerosis.
The greatest amount of my time in the past years has been devoted to developing and characterizing our interposition vein graft model in mice. This model allows us to use IVC to carotid artery transplants between congenic mice. These transplants allow us to ask the questions about which gene products contribute to the pathogenesis of vein graft disease. In addition, I have used carotid artery to carotid artery transplants to study the role of TNF receptors in atherosclerosis. For these studies, we have used apolipoprotein E-deficient mice as graft recipients.
By using mouse vein graft model we demonstrate that most of the neointimal cells in vein grafts originate from cellular pools outside of the vein graft at the time of its implantation. The importance of this work relates to our persistent inability to treat vein graft disease in human beings. The second work demonstrates that expression of the tumor necrosis factor receptor-1, even in just in the vein graft cells themselves, contributes to the pathogenesis of vein graft neointimal hyperplasia. In this project, I surgically created chimeric mice to demonstrate molecular mechanisms by which the tumor necrosis factor receptor-1 aggravates neointimal hyperplasia, a process that is believed to lay the foundation for accelerated atherosclerosis in vein grafts.
I have also adapted my vein graft procedure in mice to ask questions about the arterial wall’s role in atherosclerosis. This atherosclerosis model involves making carotid interposition grafts not with veins, but with the carotid artery of congenic mice, and placing them into the carotid artery of spontaneously atherogenic mice that are deficient in apolipoprotein E.
I plan to continue our studies related to the role of inflammatory cytokine receptors in neointimal hyperplasia and atherosclerosis. In addition, I envision extending this work with the surgical models I have created in mice.

Allen

Andrew Scott Allen

Professor of Biostatistics & Bioinformatics

My research focuses on developing new statistical methods for identifying susceptibility loci involved in complex human disease.  It involves a mix of genetics, statistics, and computer science and is motivated by the complexities of real data encountered in collaborative disease-gene mapping projects.

Gregory

Simon Gray Gregory

Margaret Harris and David Silverman Distinguished Professor

Dr. Gregory is the Margaret Harris and David Silverman Distinguished Professor and Director of the Brain Tumor Omics Program in the Duke Department of Neurosurgery, the Vice Chair of Research in the Department of Neurology, and Director of the Molecular Genomics Core at the Duke Molecular Physiology Institute. 

As a neurogenomicist, Dr. Gregory applies the experience gained from leading the sequencing of chromosome 1 for the Human Genome Project to elucidating the mechanisms underlying multi-factorial diseases using genetic, genomic, and epigenetic approaches. Dr. Gregory’s primary areas of research involve understanding the molecular processes associated with disease development and progression in brain tumors and Alzheimer’s disease, drug induced white matter injury repair in multiple sclerosis, and the characterization of lesion microenvironmental changes in MS.

He is broadly regarded across Duke as a leader in the development of novel single cell and spatial molecular technologies towards understanding the pathogenic mechanisms of disease development. Dr. Gregory is also the Section Chair of Genomics and Epigenetics at the DMPI and Director of the Duke Center of Autoimmunity and MS in the Department of Neurology.

Freedman

Neil J. Freedman

Professor of Medicine

Our work focuses on atherosclerosis-related signal transduction and the genetic bases of atherosclerosis and vein graft failure, both in vitro and in vivo. We investigate the regulation of receptor protein tyrosine kinases by G protein-coupled receptor kinases (GRKs), and the role of GRKs and β-arrestins in atherosclerosis; molecular mechanisms of atherogenesis associated with the dual Rho-GEF kalirin, the F-actin-binding protein Drebrin, and small nucleolar RNAs (snoRNAs) of the Rpl13a locus. For in vivo modeling of atherosclerosis and neointimal hyperplasia, we use mouse carotid artery bypass grafting with either veins or arteries from gene-deleted or congenic wild type mice, as well as aortic atherosclerosis studies and bone marrow transplantation. To study receptor phosphorylation, signal transduction, and intracellular trafficking, we employ primary smooth muscle cells, endothelial cells, and macrophages derived from knockout mice, as well as cells treated with RNA interference.

Key Words: atherosclerosis, G protein-coupled receptor kinases, arrestins, desensitization, phosphorylation, receptor protein tyrosine kinases, smooth muscle cells, neointimal hyperplasia, Rho-GEF, Drebrin, snoRNAs.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.