Volume, volatility, and leverage: A dynamic analysis
Date
1996-09-01
Authors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Attention Stats
Abstract
This paper uses dynamic impulse response analysis to investigate the interrelationships among stock price volatility, trading volume, and the leverage effect. Dynamic impulse response analysis is a technique for analyzing the multi-step-ahead characteristics of a nonparametric estimate of the one-step conditional density of a strictly stationary process. The technique is the generalization to a nonlinear process of Sims-style impulse response analysis for linear models. In this paper, we refine the technique and apply it to a long panel of daily observations on the price and trading volume of four stocks actively traded on the NYSE: Boeing, Coca-Cola, IBM, and MMM.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Tauchen, G, H Zhang and M Liu (1996). Volume, volatility, and leverage: A dynamic analysis. Journal of Econometrics, 74(1). pp. 177–208. 10.1016/0304-4076(95)01755-0 Retrieved from https://hdl.handle.net/10161/1897.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

George E. Tauchen
George Tauchen is the William Henry Glasson Professor of Economics and professor of finance at the Fuqua School of Business. He joined the Duke faculty in 1977 after receiving his Ph.D. from the University of Minnesota. He did his undergraduate work at the University of Wisconsin. Professor Tauchen is a fellow of the Econometric Society, the American Statistical Association, the Journal of Econometrics, and the Society for Financial Econometrics (SoFie). He is also the 2003 Duke University Scholar/Teacher of the Year. Professor Tauchen is an internationally known time series econometrician. He has developed several important new techniques for making statistical inference from financial time series data and for testing models of financial markets. He has given invited lectures at many places around the world, including London, Paris, Beijing, Taipei, Hong Kong, and Sydney. His current research (with Professor Li of Duke) examines the impact of large jump-like moves in stock market returns on the returns of various portfolios and individual securities. He is a former editor of the Journal of Business and Economic Statistics (JBES) and former associate editor of Econometrica, Econometric Theory, The Journal of the American Statistical Association (JASA), and JBES. He is currently Co-Editor of the Journal of Financial Econometrics.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.