SHP-1 as a critical regulator of Mycoplasma pneumoniae-induced inflammation in human asthmatic airway epithelial cells.
Date
2012-04
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Asthma is a chronic inflammatory disease in which airway epithelial cells are the first line of defense against exposure of the airway to infectious agents. Src homology protein (SHP)-1, a protein tyrosine phosphatase, is a negative regulator of signaling pathways that are critical to the development of asthma and host defense. We hypothesize that SHP-1 function is defective in asthma, contributing to the increased inflammatory response induced by Mycoplasma pneumoniae, a pathogen known to exacerbate asthma. M. pneumoniae significantly activated SHP-1 in airway epithelial cells collected from nonasthmatic subjects by bronchoscopy with airway brushing but not in cells from asthmatic subjects. In asthmatic airway epithelial cells, M. pneumoniae induced significant PI3K/Akt phosphorylation, NF-κB activation, and IL-8 production compared with nonasthmatic cells, which were reversed by SHP-1 overexpression. Conversely, SHP-1 knockdown significantly increased IL-8 production and PI3K/Akt and NF-κB activation in the setting of M. pneumoniae infection in nonasthmatic cells, but it did not exacerbate these three parameters already activated in asthmatic cells. Thus, SHP-1 plays a critical role in abrogating M. pneumoniae-induced IL-8 production in nonasthmatic airway epithelial cells through inhibition of PI3K/Akt and NF-κB activity, but it is defective in asthma, resulting in an enhanced inflammatory response to infection.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Wang, Ying, Zhou Zhu, Tony D Church, Njira L Lugogo, Loretta G Que, Dave Francisco, Jennifer L Ingram, Molly Huggins, et al. (2012). SHP-1 as a critical regulator of Mycoplasma pneumoniae-induced inflammation in human asthmatic airway epithelial cells. Journal of immunology (Baltimore, Md. : 1950), 188(7). pp. 3371–3381. 10.4049/jimmunol.1100573 Retrieved from https://hdl.handle.net/10161/25438.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Loretta Georgina Que
My research interests focus on studying the role of nitric oxide and related enzymes in the pathogenesis of lung disease, specifically that caused by nitrosative/oxidative stress. Proposed studies are performed in cell culture and applied to animal models of disease, then examined in human disease where relevant. It is our hope that by better understanding the role of NO and reactive nitrogen species in mediating inflammation, and regulating cell signaling, that we will not only help to unravel the basic mechanisms of NO related lung disease, but also provide a rationale for targeted therapeutic use of NO.
Key words: nitrosative defense, lung injury, nitric oxide
Jennifer Leigh Ingram
Dr. Ingram's research interests focus on the study of airway remodeling in human asthma. Proliferation, migration, and invasion of airway fibroblasts are key features of airway remodeling that contribute to diminished lung function over time. Dr. Ingram uses molecular biology approaches to define the effects of interleukin-13 (IL-13), a cytokine abundantly produced in the asthmatic airway, in the human airway fibroblast. She has identified important regulatory functions of several proteins prevalent in asthma that control fibroblast growth and pro-fibrotic growth factor production in response to IL-13. By understanding these pathways and their role in human asthma and the chronic effects of airway remodeling, novel treatment strategies may be developed.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.