On the Stein framing number of a knot
Abstract
For an integer $n$, write $X_n(K)$ for the 4-manifold obtained by attaching a 2-handle to the 4-ball along the knot $K\subset S^3$ with framing $n$. It is known that if $n< \overline{\text{tb}}(K)$, then $X_n(K)$ admits the structure of a Stein domain, and moreover the adjunction inequality implies there is an upper bound on the value of $n$ such that $X_n(K)$ is Stein. We provide examples of knots $K$ and integers $n\geq \overline{\text{tb}}(K)$ for which $X_n(K)$ is Stein, answering an open question in the field. In fact, our family of examples shows that the largest framing such that the manifold $X_n(K)$ admits a Stein structure can be arbitrarily larger than $\overline{\text{tb}}(K)$. We also provide an upper bound on the Stein framings for $K$ that is typically stronger than that coming from the adjunction inequality.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Collections
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.