Bayesian Analysis and Computational Methods for Dynamic Modeling
Date
2009
Authors
Advisors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Abstract
Dynamic models, also termed state space models, comprise an extremely rich model class for time series analysis. This dissertation focuses on building state space models for a variety of contexts and computationally efficient methods for Bayesian inference for simultaneous estimation of latent states and unknown fixed parameters.
Chapter 1 introduces state space models and methods of inference in these models. Chapter 2 describes a novel method for jointly sampling the entire latent state vector in a nonlinear Gaussian state space model using a computationally efficient adaptive mixture modeling procedure. This method is embedded in an overall Markov chain Monte Carlo algorithm for estimating fixed parameters as well as states. In Chapter 3 the method of the previous chapter is implemented in a few illustrative
nonlinear models and compared to standard existing methods. This chapter also looks at the effect of the number of mixture components as well as length of the time series on the efficiency of the method. I then turn to an biological application in Chapter 4. I discuss modeling choices as well as derivation of the state space model to be used in this application. Parameter and state estimation are analyzed in these models for both simulated and real data. Chapter 5 extends the methodology introduced in Chapter 2 from nonlinear Gaussian models to general state space models. The method is then applied to a financial
stochastic volatility model on US $ - British £ exchange rates. Bayesian inference in the previous chapter is accomplished through Markov chain Monte Carlo which is suitable for batch analyses, but computationally limiting in sequential analysis. Chapter 6 introduces sequential Monte Carlo. It discusses two methods currently available for simultaneous sequential estimation of latent states and fixed parameters and then introduces a novel algorithm that reduces the key, limiting degeneracy issue while being usable in a wide model class. Chapter 7 implements the novel algorithm in a disease surveillance context modeling influenza epidemics. Finally, Chapter 8 suggests areas for future work in both modeling and Bayesian inference. Several appendices provide detailed technical support material as well as relevant related work.
Type
Department
Description
Provenance
Citation
Permalink
Citation
Niemi, Jarad (2009). Bayesian Analysis and Computational Methods for Dynamic Modeling. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/1137.
Collections
Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.