Bayesian Analysis and Computational Methods for Dynamic Modeling

dc.contributor.advisor

West, Mike

dc.contributor.author

Niemi, Jarad

dc.date.accessioned

2009-05-01T18:29:41Z

dc.date.available

2009-05-01T18:29:41Z

dc.date.issued

2009

dc.department

Statistical Science

dc.description.abstract

Dynamic models, also termed state space models, comprise an extremely rich model class for time series analysis. This dissertation focuses on building state space models for a variety of contexts and computationally efficient methods for Bayesian inference for simultaneous estimation of latent states and unknown fixed parameters.

Chapter 1 introduces state space models and methods of inference in these models. Chapter 2 describes a novel method for jointly sampling the entire latent state vector in a nonlinear Gaussian state space model using a computationally efficient adaptive mixture modeling procedure. This method is embedded in an overall Markov chain Monte Carlo algorithm for estimating fixed parameters as well as states. In Chapter 3 the method of the previous chapter is implemented in a few illustrative

nonlinear models and compared to standard existing methods. This chapter also looks at the effect of the number of mixture components as well as length of the time series on the efficiency of the method. I then turn to an biological application in Chapter 4. I discuss modeling choices as well as derivation of the state space model to be used in this application. Parameter and state estimation are analyzed in these models for both simulated and real data. Chapter 5 extends the methodology introduced in Chapter 2 from nonlinear Gaussian models to general state space models. The method is then applied to a financial

stochastic volatility model on US $ - British £ exchange rates. Bayesian inference in the previous chapter is accomplished through Markov chain Monte Carlo which is suitable for batch analyses, but computationally limiting in sequential analysis. Chapter 6 introduces sequential Monte Carlo. It discusses two methods currently available for simultaneous sequential estimation of latent states and fixed parameters and then introduces a novel algorithm that reduces the key, limiting degeneracy issue while being usable in a wide model class. Chapter 7 implements the novel algorithm in a disease surveillance context modeling influenza epidemics. Finally, Chapter 8 suggests areas for future work in both modeling and Bayesian inference. Several appendices provide detailed technical support material as well as relevant related work.

dc.format.extent

2993798 bytes

dc.format.mimetype

application/pdf

dc.identifier.uri

https://hdl.handle.net/10161/1137

dc.language.iso

en_US

dc.subject

Statistics

dc.subject

Biology, Molecular

dc.subject

Engineering, Biomedical

dc.subject

Bayesian statistics

dc.subject

Dynamic models

dc.subject

Markov chain Monte Carlo

dc.subject

Sequential Monte Carlo

dc.subject

State

dc.subject

space models

dc.subject

Systems biology

dc.title

Bayesian Analysis and Computational Methods for Dynamic Modeling

dc.type

Dissertation

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
D_Niemi_Jarad_a_200904.pdf
Size:
2.86 MB
Format:
Adobe Portable Document Format

Collections