Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1.

Loading...
Thumbnail Image

Date

1998-07-15

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

233
views
372
downloads

Abstract

Activation of the Cyclin B/Cdc2 kinase complex triggers entry into mitosis in all eukaryotic cells. Cyclin B1 localization changes dramatically during the cell cycle, precipitously transiting from the cytoplasm to the nucleus at the beginning of mitosis. Presumably, this relocalization promotes the phosphorylation of nuclear targets critical for chromatin condensation and nuclear envelope breakdown. We show here that the previously characterized cytoplasmic retention sequence of Cyclin B1, responsible for its interphase cytoplasmic localization, is actually an autonomous nuclear export sequence, capable of directing nuclear export of a heterologous protein, and able to bind specifically to the recently identified export mediator, CRM1. We propose that the observed cytoplasmic localization of Cyclin B1 during interphase reflects the equilibrium between ongoing nuclear import and rapid CRM1-mediated export. In support of this hypothesis, we found that treatment of cells with leptomycin B, which disrupted Cyclin B1-CRM1 interactions, led to a marked nuclear accumulation of Cyclin B1. In mitosis, Cyclin B1 undergoes phosphorylation at several sites, a subset of which have been proposed to play a role in Cyclin B1 accumulation in the nucleus. Both CRM1 binding and the ability to direct nuclear export were affected by mutation of these phosphorylation sites; thus, we propose that Cyclin B1 phosphorylation at the G2/M transition prevents its interaction with CRM1, thereby reducing nuclear export and facilitating nuclear accumulation.

Department

Description

Provenance

Citation

Scholars@Duke

Kornbluth

Sally A. Kornbluth

Jo Rae Wright University Distinguished Professor Emerita

Our lab studies the regulation of complex cellular processes, including cell cycle progression and programmed cell death (apoptosis). These tightly orchestrated processes are critical for appropriate cell proliferation and cell death, and when they go awry can result in cancer and degenerative disorders. Within these larger fields, we have focused on understanding the cellular mechanisms that prevent the onset of mitosis prior to the completion of DNA replication, the processes that prevent cell division when the mitotic spindle is disrupted, the signaling pathways that prevent apoptotic cell death in cancer cells and the mechanisms that link cell metabolism to cell death and survival.

In our quest to answer these important cell biological and biochemical questions, we are varied in our use of experimental systems.   Traditionally, we have used cell-free extracts prepared from eggs of the frog Xenopus laevis which can recapitulate cell cycle events and apoptotic processes in vitro. For the study of cell cycle events, extracts are prepared which can undergo multiple rounds of DNA replication and mitosis in vitro. Progression through the cell cycle can be monitored by microscopic observation of nuclear morphology and by biochemically assaying the activity of serine/threonine kinases which control cell cycle transitions.

For the study of apoptosis, modifications in extract preparation have allowed us to produce extracts which can apoptotically fragment nuclei and can accurately reproduce the biochemical events of apoptosis, including internucleosomal DNA cleavage and activation of apoptotic proteases, the caspases.

More recently, we have focused on studying apoptosis and cell cycle progression in mammalian models, both tissue culture cells and mouse models of cancer.  In these studies, we are trying to determine the precise signaling mechanisms used by cancer cells to accelerate proliferation and evade apoptotic cell death mechanisms.   We also endeavor to subvert these mechanisms to therapeutic advantage.   We are particularly interested in links between metabolism and cell death, as high metabolic rates in cancer cells appear to suppress apoptosis to evade chemotherapy-induced cell death.

Finally, we also have several projects using the facile genetics of Drosophila melanogaster to further understand links between metabolism and cell death and also the ways in which mitochondrial dynamics are linked to apoptotic pathways.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.