The Pantheon+ Analysis: Dependence of Cosmological Constraints on Photometric-Zeropoint Uncertainties of Supernova Surveys

Abstract

Type Ia supernovae (SNe Ia) measurements of the Hubble constant, H$_0$, the cosmological mass density, $\Omega_M$, and the dark energy equation-of-state parameter, $w$, rely on numerous SNe surveys using distinct photometric systems across three decades of observation. Here, we determine the sensitivities of the upcoming SH0ES+Pantheon+ constraints on H$_0$, $\Omega_M$, and $w$ to unknown systematics in the relative photometric zeropoint calibration between the 17 surveys that comprise the Pantheon+ supernovae data set. Varying the zeropoints of these surveys simultaneously with the cosmological parameters, we determine that the SH0ES+Pantheon+ measurement of H$_0$ is robust against inter-survey photometric miscalibration, but that the measurements of $\Omega_M$ and $w$ are not. Specifically, we find that miscalibrated inter-survey systematics could represent a source of uncertainty in the measured value of H$_0$ that is no larger than $0.2$ km s$^{-1}$ Mpc$^{-1}$. This modest increase in H$_0$ uncertainty could not account for the $7$ km s$^{-1}$ Mpc$^{-1}$ "Hubble Tension" between the SH0ES measurement of H$_0$ and the Planck $\Lambda$CDM-based inference of H$_0$. However, we find that the SH0ES+Pantheon+ best-fit values of $\Omega_M$ and $w$ respectively slip, to first order, by $0.04$ and $-0.17$ per $25$ mmag of inter-survey calibration uncertainty, underscoring the vital role that cross-calibration plays in accurately measuring these parameters. Because the Pantheon+ compendium contains many surveys that share low-$z$ Hubble Flow and Cepheid-paired SNe, the SH0ES+Pantheon+ joint constraint of H$_0$ is robust against inter-survey photometric calibration errors, and such errors do not represent an impediment to jointly using SH0ES+Pantheon+ to measure H$_0$ to 1% accuracy.

Department

Description

Provenance

Citation

Scholars@Duke

Scolnic

Daniel M. Scolnic

Associate Professor of Physics

Use observational tools to measure the expansion history of the universe.  Trying to answer big questions like 'what is dark energy?'.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.