PCNA-binding activity separates RNF168 functions in DNA replication and DNA double-stranded break signaling.

Abstract

RNF168 orchestrates a ubiquitin-dependent DNA damage response to regulate the recruitment of repair factors, such as 53BP1 to DNA double-strand breaks (DSBs). In addition to its canonical functions in DSB signaling, RNF168 may facilitate DNA replication fork progression. However, the precise role of RNF168 in DNA replication remains unclear. Here, we demonstrate that RNF168 is recruited to DNA replication factories in a manner that is independent of the canonical DSB response pathway regulated by Ataxia-Telangiectasia Mutated (ATM) and RNF8. We identify a degenerate Proliferating Cell Nuclear Antigen (PCNA)-interacting peptide (DPIP) motif in the C-terminus of RNF168, which together with its Motif Interacting with Ubiquitin (MIU) domain mediates binding to mono-ubiquitylated PCNA at replication factories. An RNF168 mutant harboring inactivating substitutions in its DPIP box and MIU1 domain (termed RNF168 ΔDPIP/ΔMIU1) is not recruited to sites of DNA synthesis and fails to support ongoing DNA replication. Notably, the PCNA interaction-deficient RNF168 ΔDPIP/ΔMIU1 mutant fully rescues the ability of RNF168-/- cells to form 53BP1 foci in response to DNA DSBs. Therefore, RNF168 functions in DNA replication and DSB signaling are fully separable. Our results define a new mechanism by which RNF168 promotes DNA replication independently of its canonical functions in DSB signaling.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1093/nar/gkae918

Publication Info

Yang, Yang, Deepika Jayaprakash, Satpal S Jhujh, John J Reynolds, Steve Chen, Yanzhe Gao, Jay Ramanlal Anand, Elizabeth Mutter-Rottmayer, et al. (2024). PCNA-binding activity separates RNF168 functions in DNA replication and DNA double-stranded break signaling. Nucleic acids research. p. gkae918. 10.1093/nar/gkae918 Retrieved from https://hdl.handle.net/10161/31619.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Zhou

Pei Zhou

Professor of Biochemistry

The Zhou lab focuses on the elucidation of the structure and dynamics of protein–protein and protein–ligand interactions and their functions in various cellular processes. Our current efforts are directed at enzymes and protein complexes involved in bacterial membrane biosynthesis, translesion DNA synthesis, co-transcriptional regulation, and host-pathogen interactions. Our investigations of these important cellular machineries have led to the development of novel antibiotics and cancer therapeutics, as well as the establishment of new biotechnology adventures.

 

The Zhou lab integrates a variety of biochemical and biophysical tools, including NMR, X-ray crystallography, cryo-EM, and enzymology. The lab has played a major role in the development and application of innovative NMR technologies, including high-resolution, high-dimensional spectral reconstruction techniques.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.