Compressive sensing and adaptive sampling applied to millimeter wave inverse synthetic aperture imaging

dc.contributor.author

Zhu, Ruoyu

dc.contributor.author

Richard, Jonathan T

dc.contributor.author

Brady, David J

dc.contributor.author

Marks, Daniel L

dc.contributor.author

Everitt, Henry O

dc.date.accessioned

2017-05-13T22:01:17Z

dc.date.available

2017-05-13T22:01:17Z

dc.date.issued

2017-02-06

dc.description.abstract

© 2017 Optical Society of America.In order to improve speed and efficiency over traditional scanning methods, a Bayesian compressive sensing algorithm using adaptive spatial sampling is developed for single detector millimeter wave synthetic aperture imaging. The application of this algorithm is compared to random sampling to demonstrate that the adaptive algorithm converges faster for simple targets and generates more reliable reconstructions for complex targets.

dc.identifier.eissn

1094-4087

dc.identifier.uri

https://hdl.handle.net/10161/14341

dc.publisher

The Optical Society

dc.relation.ispartof

Optics Express

dc.relation.isversionof

10.1364/OE.25.002270

dc.title

Compressive sensing and adaptive sampling applied to millimeter wave inverse synthetic aperture imaging

dc.type

Journal article

duke.contributor.orcid

Everitt, Henry O|0000-0002-8141-3768

pubs.begin-page

2270

pubs.end-page

2284

pubs.issue

3

pubs.organisational-group

Duke

pubs.organisational-group

Physics

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.publication-status

Published

pubs.volume

25

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Zhu Opt. Express25 2017.pdf
Size:
3.21 MB
Format:
Adobe Portable Document Format
Description:
Published version