Classification and genetic characterization of pattern-forming Bacilli.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats



One of the more natural but less commonly studied forms of colonial bacterial growth is pattern formation. This type of growth is characterized by bacterial populations behaving in an organized manner to generate readily identifiable geometric and predictable morphologies on solid and semi-solid surfaces. In our first attempt to study the molecular basis of pattern formation in Bacillus subtilis, we stumbled upon an enigma: some strains used to describe pattern formation in B. subtilis did not have the phenotypic or genotypic characteristics of B. subtilis. In this report, we show that these strains are actually not B. subtilis, but belong to a different class of Bacilli, group I. We show further that commonly used laboratory strains of B. subtilis can co-exist as mixed cultures with group I Bacilli, and that the latter go unnoticed when grown on frequently used laboratory substrates. However, when B. subtilis is grown under more stringent semiarid conditions, members of group I emerge in the form of complex patterns. When B. subtilis is grown under less stringent and more motile conditions, B. subtilis forms its own pattern, and members of group I remain unnoticed. These findings have led us to revise some of the mechanistic and evolutionary hypotheses that have been proposed to explain pattern growth in Bacilli.







Erich David Jarvis

Adjunct Professor in the Deptartment of Neurobiology

Dr. Jarvis' laboratory studies the neurobiology of vocal communication. Emphasis is placed on the molecular pathways involved in the perception and production of learned vocalizations. They use an integrative approach that combines behavioral, anatomical, electrophysiological and molecular biological techniques. The main animal model used is songbirds, one of the few vertebrate groups that evolved the ability to learn vocalizations. The generality of the discoveries is tested in other vocal learning orders, such as parrots and hummingbirds, as well as non-vocal learners, such as pigeons and non-human primates. Some of the questions require performing behavior/molecular biology experiments in freely ranging animals, such as hummingbirds in tropical forest of Brazil. Recent results show that in songbirds, parrots and hummingbirds, perception and production of song are accompanied by anatomically distinct patterns of gene expression. All three groups were found to exhibit vocally-activated gene expression in exactly 7 forebrain nuclei that are very similar to each other. These structures for vocal learning and production are thought to have evolved independently within the past 70 million years, since they are absent from interrelated non-vocal learning orders. One structure, Area X of the basal ganglia's striatum in songbirds, shows large differential gene activation depending on the social context in which the bird sings. These differences may reflect a semantic content of song, perhaps similar to human language.

The overall goal of the research is to advance knowledge of the neural mechanisms for vocal learning and basic mechanisms of brain function. These goals are further achieved by combined collaborative efforts with the laboratories of Drs. Mooney and Nowicki at Duke University, who study respectively behavior and electrophysiological aspects of songbird vocal communication.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.