Comparing the Diagnostic Accuracy of Clinician Judgment to a Novel Host Response Diagnostic for Acute Respiratory Illness.
Date
2021-12
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Background
Difficulty discriminating bacterial from viral infections drives antibacterial misuse. Host gene expression tests discriminate bacterial and viral etiologies, but their clinical utility has not been evaluated.Methods
Host gene expression and procalcitonin levels were measured in 582 emergency department participants with suspected infection. We also recorded clinician diagnosis and clinician-recommended treatment. These 4 diagnostic strategies were compared with clinical adjudication as the reference. To estimate the clinical impact of host gene expression, we calculated the change in overall Net Benefit (∆NB; the difference in Net Benefit comparing 1 diagnostic strategy with a reference) across a range of prevalence estimates while factoring in the clinical significance of false-positive and -negative errors.Results
Gene expression correctly classified bacterial, viral, or noninfectious illness in 74.1% of subjects, similar to the other strategies. Clinical diagnosis and clinician-recommended treatment revealed a bias toward overdiagnosis of bacterial infection resulting in high sensitivity (92.6% and 94.5%, respectively) but poor specificity (67.2% and 58.8%, respectively), resulting in a 33.3% rate of inappropriate antibacterial use. Gene expression offered a more balanced sensitivity (79.0%) and specificity (80.7%), which corresponded to a statistically significant improvement in average weighted accuracy (79.9% vs 71.5% for procalcitonin and 76.3% for clinician-recommended treatment; P<.0001 for both). Consequently, host gene expression had greater Net Benefit in diagnosing bacterial infection than clinician-recommended treatment (∆NB=6.4%) and procalcitonin (∆NB=17.4%).Conclusions
Host gene expression-based tests to distinguish bacterial and viral infection can facilitate appropriate treatment, improving patient outcomes and mitigating the antibacterial resistance crisis.Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Jaffe, Ian S, Anja K Jaehne, Eugenia Quackenbush, Emily R Ko, Emanuel P Rivers, Micah T McClain, Geoffrey S Ginsburg, Christopher W Woods, et al. (2021). Comparing the Diagnostic Accuracy of Clinician Judgment to a Novel Host Response Diagnostic for Acute Respiratory Illness. Open forum infectious diseases, 8(12). p. ofab564. 10.1093/ofid/ofab564 Retrieved from https://hdl.handle.net/10161/24291.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Emily Ray Ko
Clinical and translational research, COVID-19 therapeutics, clinical biomarkers for infectious disease.
Micah Thomas McClain
Geoffrey Steven Ginsburg
Dr. Geoffrey S. Ginsburg's research interests are in the development of novel paradigms for developing and translating genomic information into medical practice and the integration of personalized medicine into health care.
Christopher Wildrick Woods
1. Emerging Infections
2. Global Health
3. Epidemiology of infectious diseases
4. Clinical microbiology and diagnostics
5. Bioterrorism Preparedness
6. Surveillance for communicable diseases
7. Antimicrobial resistance
Ephraim Tsalik
My research at Duke has focused on understanding the dynamic between host and pathogen so as to discover and develop host-response markers that can diagnose and predict health and disease. This new and evolving approach to diagnosing illness has the potential to significantly impact individual as well as public health considering the rise of antibiotic resistance.
With any potential infectious disease diagnosis, it is difficult, if not impossible, to determine at the time of presentation what the underlying cause of illness is. For example, acute respiratory illness is among the most frequent reasons for patients to seek care. These symptoms, such as cough, sore throat, and fever may be due to a bacterial infection, viral infection, both, or a non-infectious condition such as asthma or allergies. Given the difficulties in making the diagnosis, most patients are inappropriately given antibacterials. However, each of these etiologies (bacteria, virus, or something else entirely) leaves a fingerprint embedded in the host’s response. We are very interested in finding those fingerprints and exploiting them to generate new approaches to understand, diagnose, and manage disease.
These principles also apply to sepsis, defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Just as with acute respiratory illness, it is often difficult to identify whether infection is responsible for a patient’s critical illness. We have embarked on a number of research programs that aim to better identify sepsis; define sepsis subtypes that can be used to guide future clinical research; and to better predict sepsis outcomes. These efforts have focused on many systems biology modalities including transcriptomics, miRNA, metabolomics, and proteomics. Consequently, our Data Science team has utilized these highly complex data to develop new statistical methods, furthering both the clinical and statistical research communities.
These examples are just a small sampling of the breadth of research Dr. Tsalik and his colleagues have conducted.
In April 2022, Dr. Tsalik has joined Danaher Diagnostics as the VP and Chief Scientific Officer for Infectious Disease, where he is applying this experience in biomarkers and diagnostics to shape the future of diagnostics in ID.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.