Fast construction of hierarchical matrix representation from matrix-vector multiplication
dc.contributor.author | Lin, L | |
dc.contributor.author | Lu, J | |
dc.contributor.author | Ying, L | |
dc.date.accessioned | 2017-04-23T15:49:54Z | |
dc.date.available | 2017-04-23T15:49:54Z | |
dc.date.issued | 2011-05-10 | |
dc.description.abstract | We develop a hierarchical matrix construction algorithm using matrix-vector multiplications, based on the randomized singular value decomposition of low-rank matrices. The algorithm uses O(logn) applications of the matrix on structured random test vectors and O(nlogn) extra computational cost, where n is the dimension of the unknown matrix. Numerical examples on constructing Green's functions for elliptic operators in two dimensions show efficiency and accuracy of the proposed algorithm. © 2011 Elsevier Inc. | |
dc.identifier.eissn | 1090-2716 | |
dc.identifier.issn | 0021-9991 | |
dc.identifier.uri | ||
dc.publisher | Elsevier BV | |
dc.relation.ispartof | Journal of Computational Physics | |
dc.relation.isversionof | 10.1016/j.jcp.2011.02.033 | |
dc.title | Fast construction of hierarchical matrix representation from matrix-vector multiplication | |
dc.type | Journal article | |
duke.contributor.orcid | Lu, J|0000-0001-6255-5165 | |
pubs.begin-page | 4071 | |
pubs.end-page | 4087 | |
pubs.issue | 10 | |
pubs.organisational-group | Chemistry | |
pubs.organisational-group | Duke | |
pubs.organisational-group | Mathematics | |
pubs.organisational-group | Physics | |
pubs.organisational-group | Trinity College of Arts & Sciences | |
pubs.publication-status | Published | |
pubs.volume | 230 |