Fast construction of hierarchical matrix representation from matrix-vector multiplication

dc.contributor.author

Lin, L

dc.contributor.author

Lu, J

dc.contributor.author

Ying, L

dc.date.accessioned

2017-04-23T15:49:54Z

dc.date.available

2017-04-23T15:49:54Z

dc.date.issued

2011-05-10

dc.description.abstract

We develop a hierarchical matrix construction algorithm using matrix-vector multiplications, based on the randomized singular value decomposition of low-rank matrices. The algorithm uses O(logn) applications of the matrix on structured random test vectors and O(nlogn) extra computational cost, where n is the dimension of the unknown matrix. Numerical examples on constructing Green's functions for elliptic operators in two dimensions show efficiency and accuracy of the proposed algorithm. © 2011 Elsevier Inc.

dc.identifier.eissn

1090-2716

dc.identifier.issn

0021-9991

dc.identifier.uri

https://hdl.handle.net/10161/14064

dc.publisher

Elsevier BV

dc.relation.ispartof

Journal of Computational Physics

dc.relation.isversionof

10.1016/j.jcp.2011.02.033

dc.title

Fast construction of hierarchical matrix representation from matrix-vector multiplication

dc.type

Journal article

duke.contributor.orcid

Lu, J|0000-0001-6255-5165

pubs.begin-page

4071

pubs.end-page

4087

pubs.issue

10

pubs.organisational-group

Chemistry

pubs.organisational-group

Duke

pubs.organisational-group

Mathematics

pubs.organisational-group

Physics

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.publication-status

Published

pubs.volume

230

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1001.0149v2.pdf
Size:
304.58 KB
Format:
Adobe Portable Document Format