Quantifying Gerrymandering in North Carolina

Abstract

Using an ensemble of redistricting plans, we evaluate whether a given political districting faithfully represents the geo-political landscape. Redistricting plans are sampled by a Monte Carlo algorithm from a probability distribution that adheres to realistic and non-partisan criteria. Using the sampled redistricting plans and historical voting data, we produce an ensemble of elections that reveal geo-political structure within the state. We showcase our methods on the two most recent districtings of NC for the U.S. House of Representatives, as well as a plan drawn by a bipartisan redistricting panel. We find the two state enacted plans are highly atypical outliers whereas the bipartisan plan accurately represents the ensemble both in partisan outcome and in the fine scale structure of district-level results.

Department

Description

Provenance

Citation

Scholars@Duke

Herschlag

Gregory Joseph Herschlag

Associate Research Professor of Mathematics

I am interested in studying techniques to understand fairness in redistricting.  I am also interested in computational fluid dynamics and high-performance computing.

Mattingly

Jonathan Christopher Mattingly

Kimberly J. Jenkins Distinguished University Professor of New Technologies

Jonathan Christopher  Mattingly grew up in Charlotte, NC where he attended Irwin Ave elementary and Charlotte Country Day.  He graduated from the NC School of Science and Mathematics and received a BS is Applied Mathematics with a concentration in physics from Yale University. After two years abroad with a year spent at ENS Lyon studying nonlinear and statistical physics on a Rotary Fellowship, he returned to the US to attend Princeton University where he obtained a PhD in Applied and Computational Mathematics in 1998. After 4 years as a Szego assistant professor at Stanford University and a year as a member of the IAS in Princeton, he moved to Duke in 2003. He is currently a Professor of Mathematics and of Statistical Science.

His expertise is in the longtime behavior of stochastic system including randomly forced fluid dynamics, turbulence, stochastic algorithms used in molecular dynamics and Bayesian sampling, and stochasticity in biochemical networks.

Since 2013 he has also been working to understand and quantify gerrymandering and its interaction of a region's geopolitical landscape. This has lead him to testify in a number of court cases including in North Carolina, which led to the NC congressional and both NC legislative maps being deemed unconstitutional and replaced for the 2020 elections. 

He is the recipient of a Sloan Fellowship and a PECASE CAREER award.  He is also a fellow of the IMS and the AMS. He was awarded the Defender of Freedom award by  Common Cause for his work on Quantifying Gerrymandering.



Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.