Differential introgression of a female competitive trait in a hybrid zone between sex-role reversed species.


Mating behavior between recently diverged species in secondary contact can impede or promote reproductive isolation. Traditionally, researchers focus on the importance of female mate choice and male-male competition in maintaining or eroding species barriers. Although female-female competition is widespread, little is known about its role in the speciation process. Here, we investigate a case of interspecific female competition and its influence on patterns of phenotypic and genetic introgression between species. We examine a hybrid zone between sex-role reversed, Neotropical shorebird species, the northern jacana (Jacana spinosa) and wattled jacana (J. jacana), in which female-female competition is a major determinant of reproductive success. Previous work found that females of the more aggressive and larger species, J. spinosa, disproportionately mother hybrid offspring, potentially by monopolizing breeding territories in sympatry with J. jacana. We find a cline shift of female body mass relative to the genetic center of the hybrid zone, consistent with asymmetric introgression of this competitive trait. We suggest that divergence in sexual characteristics between sex-role reversed females can influence patterns of gene flow upon secondary contact, similar to males in systems with more typical sex roles.





Published Version (Please cite this version)


Publication Info

Lipshutz, Sara E, Joana I Meier, Graham E Derryberry, Matthew J Miller, Matthew J Miller, Ole Seehausen and Elizabeth P Derryberry (2019). Differential introgression of a female competitive trait in a hybrid zone between sex-role reversed species. Evolution; international journal of organic evolution, 73(2). pp. 188–201. 10.1111/evo.13675 Retrieved from https://hdl.handle.net/10161/28450.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Sara E Lipshutz

Assistant Professor of Biology

Our research focuses on the evolution of behavior across weird and wonderfully diverse species of birds. This work bridges “muddy boots” experimental fieldwork with a variety of molecular and computational approaches in genetics, genomics, neuroscience, and endocrinology. We have several research foci:  


1. Female perspectives in biology. Cultural biases shape our predictions for how and why animals behave the way they do, and female animals have historically been neglected in biological research. We study the evolution of female competition across diverse avian species, ranging from social polyandry to monogamy in shorebirds and songbirds. Critically, hypotheses derived from studying males (i.e. testosterone focus) do not explain interspecific variation in female aggression. We use population genomic and transcriptomic data to evaluate the proximate causes and ultimate consequences of female competition.  


2. Global change biology. In the age of the Anthropocene, animals are facing evolutionary unprecedented environmental changes. Sensory pollutants like anthropogenic noise and artificial light at night can alter animal physiology, behavior, and ecology on a rapid timescale. Behavior flexibility and adaptation may lead the way in helping animals respond to novel challenges. We investigate why some individuals and species may be better prepared to face global change.  

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.