El Niño and health risks from landscape fire emissions in Southeast Asia.

Abstract

Emissions from landscape fires affect both climate and air quality(1). In this study, we combine satellite-derived fire estimates and atmospheric modeling to quantify health effects from fire emissions in Southeast Asia from 1997 to 2006. This region has large interannual variability in fire activity due to coupling between El Niño-induced droughts and anthropogenic land use change(2,3). We show that during strong El Niño years, fires contribute up to 200 μg/m(3) and 50 ppb in annual average fine particulate matter (PM2.5) and ozone (O3) surface concentrations near fire sources, respectively. This corresponds to a fire contribution of 200 additional days per year that exceed the World Health Organization (WHO) 50 μg/m(3) 24-hour PM2.5 interim target (IT-2)(4) and an estimated 10,800 (6,800-14,300) person (~2%) annual increase in regional adult cardiovascular mortality. Our results indicate that reducing regional deforestation and degradation fires would improve public health along with widely established benefits from reducing carbon emissions, preserving biodiversity, and maintaining ecosystem services.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1038/nclimate1658

Publication Info

Marlier, Miriam E, Ruth S DeFries, Apostolos Voulgarakis, Patrick L Kinney, James T Randerson, Drew T Shindell, Yang Chen, Greg Faluvegi, et al. (2013). El Niño and health risks from landscape fire emissions in Southeast Asia. Nat Clim Chang, 3. pp. 131–136. 10.1038/nclimate1658 Retrieved from https://hdl.handle.net/10161/15425.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Shindell

Drew Todd Shindell

Nicholas Distinguished Professor of Earth Science

Drew Shindell is Nicholas Professor of Earth Science at Duke University. From 1995 to 2014 he was at the NASA Goddard Institute for Space Studies in New York City and taught at Columbia University. He earned his Bachelor's at UC Berkeley and PhD at Stony Brook University, both in Physics. He studies climate change, air quality, and links between science and policy. He has been an author on >250 peer-reviewed publications, received awards from Scientific American, NASA, the NSF and the EPA, and is a fellow of AGU and AAAS.

He has testified on climate issues before both houses of the US Congress (at the request of both parties), developed a climate change course with the American Museum of Natural History, and made numerous media appearances as part of his outreach efforts. He chaired the 2011 UNEP/WMO Integrated Assessment of Black Carbon and Tropospheric Ozone, and was a Coordinating Lead Author on the 2013 Fifth Assessment Report of the IPCC and on the 2018 IPCC Special Report on 1.5°C. He also chairs the Scientific Advisory Panel to the Climate and Clean Air Coalition of nations and organizations.


 


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.