Conserved Structural Motif Identified in Peptides That Bind to Geminivirus Replication Protein Rep.
Date
2021-09
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
The geminivirus replication protein, Rep, has long been recognized as a high-value target for control of geminivirus infections as this protein is highly conserved and essential for viral replication and proliferation. In addition, inhibition of viral replication has been pursued through various antiviral strategies with varying degrees of success, including inhibitory peptides that target Rep. While much effort has centered around sequence characterization of the Rep protein and inhibitory peptides, detailed structural analysis has been missing. This study computationally investigated the presence of common structural features within these inhibitory peptides and if these features could inform if a particular peptide will bind Rep and/or interfere with viral replication. Molecular dynamics simulations of the inhibitory peptide library showed that simply possessing stable structural features does not inform interference of viral replication regardless of the binding of Rep. Additionally, nearly all known Rep inhibitory peptides sample a conserved β-sheet structural motif, possibly informing structure-function relationships in binding Rep. In particular, two peptides (A22 and A64) characterized by this structural motif were computationally docked against a wide variety of geminivirus Rep proteins to determine a mechanism of action. Computational docking revealed these peptides utilize a common Rep protein sequence motif for binding, HHN-x1/2-Q. The results identified residues in both Rep and the inhibitory peptides that play a significant role in the interaction, establishing the foundation for a rational structure-based design approach for the construction of both broadly reactive and geminivirus species-specific inhibitors.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Ascencio-Ibáñez, J Trinidad, and Benjamin G Bobay (2021). Conserved Structural Motif Identified in Peptides That Bind to Geminivirus Replication Protein Rep. Biochemistry, 60(37). pp. 2795–2809. 10.1021/acs.biochem.1c00408 Retrieved from https://hdl.handle.net/10161/28916.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

Benjamin Bobay
I am the Assistant Director of the Duke University NMR Center and an Assistant Professor in the Duke Radiology Department. I was originally trained as a structural biochemist with an emphasis on utilizing NMR and continue to use this technique daily helping collaborators characterize protein structures and small molecules through a diverse set of NMR experiments. Through the structural characterization of various proteins, from both planta and eukaryotes, I have developed a robust protocol of utilizing computational biology for describing binding events, mutations, post-translations modifications (PTMs), and/or general behavior within in silico solution scenarios. I have utilized these techniques in collaborations ranging from plant pathologists at the Swammerdam Institute for Life Sciences department at the University of Amsterdam to biomedical engineers at North Carolina State University to professors in the Pediatrics department at Duke University. These studies have centered around the structural and functional consequences of PTMs (such as phosphorylation), mutation events, truncation of multi-domain proteins, dimer pulling experiments, to screening of large databases of ligands for potential binding events. Through this combination of NMR and computational biology I have amassed 50 peer-reviewed published articles and countless roles on scientific projects, as well as the development of several tutorials concerning the creation of ligand databases and high-throughput screening of large databases utilizing several different molecular dynamic and computational docking programs.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.