A Cluster of Nontuberculous Mycobacterial Tenosynovitis Following Hurricane Relief Efforts.

Abstract

Background

Nontuberculous mycobacteria (NTM) are a rare cause of infectious tenosynovitis of the upper extremity. Using molecular methods, clinical microbiology laboratories are increasingly reporting identification down to the species level. Improved methods for speciation are revealing new insights into the clinical and epidemiologic features of rare NTM infections.

Methods

We encountered 3 cases of epidemiologically linked upper extremity NTM tenosynovitis associated with exposure to hurricane-damaged wood. We conducted whole-genome sequencing to assess isolate relatedness followed by a literature review of NTM infections that involved the upper extremity.

Results

Despite shared epidemiologic risk, the cases were caused by 3 distinct organisms. Two cases were rare infections caused by closely related but distinct species within the Mycobacterium terrae complex that could not be differentiated by traditional methods. The third case was caused by Mycobacterium intracellulare. An updated literature review that focused on research that used modern molecular speciation methods found that several species within the M. terrae complex are increasingly reported as a cause of upper extremity tenosynovitis, often in association with environmental exposures.

Conclusions

These cases illustrate the importance of molecular methods for speciating phenotypically similar NTM, as well as the limitations of laboratory-based surveillance in detecting point-source outbreaks when the source is environmental and may involve multiple organisms.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1093/cid/ciaa1665

Publication Info

Turner, Nicholas A, Mollie I Sweeney, Ana M Xet-Mull, Jeremy Storm, Suhail K Mithani, David B Jones, Jeremy J Miles, David M Tobin, et al. (2021). A Cluster of Nontuberculous Mycobacterial Tenosynovitis Following Hurricane Relief Efforts. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 72(12). pp. e931–e937. 10.1093/cid/ciaa1665 Retrieved from https://hdl.handle.net/10161/24793.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Turner

Nicholas Turner

Assistant Professor of Medicine
Sweeney

Mollie Sweeney

Postdoctoral Associate
Mithani

Suhail Kamrudin Mithani

Associate Professor of Surgery
Tobin

David M. Tobin

Professor of Molecular Genetics and Microbiology

Tuberculosis: Mycobacterial Pathogenesis and Host Susceptibility

Tuberculosis kills 1.5 million people annually. Our laboratory aims to understand the intricate interplay between mycobacteria and their hosts using a combination of model organism genetics, human genetics, pharmacology and high-resolution microscopy. By identifying key pathways utilized by the infecting bacteria and the host innate immune system, we hope to discover new therapeutic targets and interventions to combat this enduringly destructive disease.

Using a Mycobacterium/zebrafish model, we have identified new host susceptibility loci for tuberculosis. Zebrafish are natural hosts to Mycobacterium marinum, the closest relative of the Mycobacterium tuberculosis complex. Because zebrafish embryos and larvae are optically transparent, we are able to visualize the complex details of mycobacterial pathogenesis in whole, live animals. The facile genetics of the zebrafish allow us to map and positionally clone affected host susceptibility genes. In addition, zebrafish larvae are remarkably permeable to small molecules, providing a platform for whole-animal pharmacological manipulation of specific host immune responses.

We have identified novel pathways that modulate susceptibility to tuberculosis. We have shown that genes identified in the zebrafish model are also important in human tuberculosis. We find robust associations of human variants in a specific eicosanoid pathway with susceptibility to both tuberculosis and leprosy.

We have active collaborations in both Vietnam and Guatemala. In Guatemala, we are working with the Clínica Familiar Luis Angel García and the Asociación de Salud Integral to support projects involving HIV-infected patients and to understand the dynamics of TB transmission in Central America.

Stout

Jason Eric Stout

Professor of Medicine

My research focuses on the epidemiology, natural history, and treatment of tuberculosis and nontuberculous mycobacterial infections. I am also interested in the impact of HIV infection on mycobacterial infection and disease, and in examining health disparities as they relate to infectious diseases, particularly in immigrant populations.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.