A broad survey of hydraulic and mechanical safety in the xylem of conifers.
Date
2014-08
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Drought-induced forest dieback has been widely reported over the last decades, and the evidence for a direct causal link between survival and hydraulic failure (xylem cavitation) is now well known. Because vulnerability to cavitation is intimately linked to the anatomy of the xylem, the main objective of this study was to better understand the xylem anatomical properties associated with cavitation resistance. An extensive data set of cavitation resistance traits and xylem anatomical properties was developed for 115 conifer species, with special attention given to the micro-morphology of bordered pits. The ratio of torus to pit aperture diameter, so-called torus overlap, increased with increasing cavitation resistance, while the flexibility of the margo does not seem to play a role, suggesting that air-seeding is located at the seal between the aspirated torus and pit aperture. Moreover, punctured tori were reported in various Pinaceae species. Species resistant to cavitation had thicker tracheid walls, while their lumen diameter (conduit size) was only slightly reduced, minimizing the impact on hydraulic conductance. The results also demonstrated (i) the existence of an indirect trade-off between hydraulic safety and mechanical strength; and (ii) a consistency between species distribution and xylem anatomy: species with a wide torus overlap and high valve effects are found in arid environments such as the Mediterranean region.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Bouche, Pauline S, Maximilien Larter, Jean-Christophe Domec, Régis Burlett, Peter Gasson, Steven Jansen and Sylvain Delzon (2014). A broad survey of hydraulic and mechanical safety in the xylem of conifers. Journal of experimental botany, 65(15). pp. 4419–4431. 10.1093/jxb/eru218 Retrieved from https://hdl.handle.net/10161/19895.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Jean Christophe Domec
Bordeaux Sciences Agro in FRANCE (primary appointment)
Discovery of knowledge in Plant water relations, ecosystem ecology and ecohydrology, with special focus on: - Long-distance water transport under future climate; - Drought tolerance and avoidance; - Patterns of changes in structural and functional traits within individual plants. My goal as a researcher is to improve the fundamental science understanding of how plants and terrestrial ecosystems respond to climate changes, and to provide tree breeders with policy-relevant information. I have carried out research on interactions between soil water and plant water use in contrasting ecosystems, in cooperation with scientists at Bordeaux Sciences Agro in FRANCE (primary appointment), Duke University, Oregon State University, and the USDA Forest Service, Southern Global Change Program, recently renamed EFETAC (Eastern Forest Environmental Threat Assessment Center).
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.