On the evolutionary modification of self-incompatibility: Implications of partial clonality for allelic diversity and genealogical structure
Date
2008-01-01
Authors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Experimental investigations of homomorphic self-incompatibility (SI) have revealed an unanticipated level of complexity in its expression, permitting fine regulation over the course of a lifetime or a range of environmental conditions. Many flowering plants express some level of clonal reproduction, and phylogenetic analyses suggest that clonality evolves in a correlated fashion with SI in Solanum (Solanaceae). Here, we use a diffusion approximation to explore the effects on the evolutionary dynamics of SI of vegetative propagation with SI restricted to reproduction through seed. While clonality reduces the strength of frequency-dependent selection maintaining S-allele diversity, much of the great depth typical of S-allele genealogies is preserved. Our results suggest that clonality can play an important role in the evolution of SI systems, and may afford insight into unexplained features of allele genealogies in the Solanaceae.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Collections
Scholars@Duke

Marcy K. Uyenoyama
Marcy Uyenoyama studies mechanisms of evolutionary change at the molecular and population levels. Among the questions under study include the prediction and detection of the effects of natural selection on genomic structure. A major area of research addresses the development of maximum-likelihood and Bayesian methods for inferring evolutionary processes from the pattern of molecular variation. Evolutionary processes currently under study include characterization of population structure across genomes.
Material is made available in this collection at the direction of authors according to their understanding of their rights in that material. You may download and use these materials in any manner not prohibited by copyright or other applicable law.