Approximately Counting Perfect and General Matchings in Bipartite and General Graphs

Loading...
Thumbnail Image

Date

2009

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

703
views
1703
downloads

Abstract

We develop algorithms to approximately count perfect matchings in bipartite graphs (or permanents of the corresponding adjacency matrices), perfect matchings in nonbipartite graphs (or hafnians), and general matchings in bipartite and nonbipartite graphs (or matching generating polynomials).

First, we study the problem of approximating the permanent and generating weighted perfect matchings in bipartite graphs from their correct distribution. We present a perfect sampling algorithm using self-reducible acceptance/rejection and an upper bound for the permanent. It has a polynomial expected running time for a class of dense problems, and it gives an improvement in running time by a factor of $n^3$ for matrices that are (.6)-dense.

Next, we apply the similar approach to study perfect matchings in nonbipartite graphs and also general matchings in general graphs. Our algorithms here have a subexponential expected running time for some classes of nontrivial graphs and are competitive with other Markov chain Monte Carlo methods.

Department

Description

Provenance

Citation

Citation

Law, Wai Jing (2009). Approximately Counting Perfect and General Matchings in Bipartite and General Graphs. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/1054.

Collections


Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.