The cardinality of the augmentation category of a Legendrian link
dc.contributor.author | Ng, L | |
dc.contributor.author | Rutherford, D | |
dc.contributor.author | Shende, V | |
dc.contributor.author | Sivek, S | |
dc.date.accessioned | 2018-12-11T15:19:29Z | |
dc.date.available | 2018-12-11T15:19:29Z | |
dc.date.issued | 2017 | |
dc.date.updated | 2018-12-11T15:19:29Z | |
dc.description.abstract | We introduce a notion of cardinality for the augmentation category associated to a Legendrian knot or link in standard contact R3. This ℓhomotopy cardinality' is an invariant of the category and allows for a weighted count of augmentations, which we prove to be determined by the ruling polynomial of the link. We present an application to the augmentation category of doubly Lagrangian slice knots. | |
dc.identifier.issn | 1073-2780 | |
dc.identifier.issn | 1945-001X | |
dc.identifier.uri | ||
dc.language | English | |
dc.publisher | International Press | |
dc.relation.ispartof | Mathematical Research Letters | |
dc.relation.isversionof | 10.4310/MRL.2017.v24.n6.a14 | |
dc.subject | Science & Technology | |
dc.subject | Physical Sciences | |
dc.subject | Mathematics | |
dc.subject | CONTACT HOMOLOGY | |
dc.subject | LAGRANGIAN CONCORDANCE | |
dc.subject | CONSTRUCTIBLE SHEAVES | |
dc.subject | KNOTS | |
dc.title | The cardinality of the augmentation category of a Legendrian link | |
dc.type | Journal article | |
duke.contributor.orcid | Ng, L|0000-0002-2443-5696 | |
pubs.begin-page | 1845 | |
pubs.end-page | 1874 | |
pubs.issue | 6 | |
pubs.organisational-group | Trinity College of Arts & Sciences | |
pubs.organisational-group | Duke | |
pubs.organisational-group | Mathematics | |
pubs.publication-status | Published | |
pubs.volume | 24 |