The cardinality of the augmentation category of a Legendrian link

dc.contributor.author

Ng, L

dc.contributor.author

Rutherford, D

dc.contributor.author

Shende, V

dc.contributor.author

Sivek, S

dc.date.accessioned

2018-12-11T15:19:29Z

dc.date.available

2018-12-11T15:19:29Z

dc.date.issued

2017

dc.date.updated

2018-12-11T15:19:29Z

dc.description.abstract

We introduce a notion of cardinality for the augmentation category associated to a Legendrian knot or link in standard contact R3. This ℓhomotopy cardinality' is an invariant of the category and allows for a weighted count of augmentations, which we prove to be determined by the ruling polynomial of the link. We present an application to the augmentation category of doubly Lagrangian slice knots.

dc.identifier.issn

1073-2780

dc.identifier.issn

1945-001X

dc.identifier.uri

https://hdl.handle.net/10161/17780

dc.language

English

dc.publisher

International Press

dc.relation.ispartof

Mathematical Research Letters

dc.relation.isversionof

10.4310/MRL.2017.v24.n6.a14

dc.subject

Science & Technology

dc.subject

Physical Sciences

dc.subject

Mathematics

dc.subject

CONTACT HOMOLOGY

dc.subject

LAGRANGIAN CONCORDANCE

dc.subject

CONSTRUCTIBLE SHEAVES

dc.subject

KNOTS

dc.title

The cardinality of the augmentation category of a Legendrian link

dc.type

Journal article

duke.contributor.orcid

Ng, L|0000-0002-2443-5696

pubs.begin-page

1845

pubs.end-page

1874

pubs.issue

6

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.organisational-group

Duke

pubs.organisational-group

Mathematics

pubs.publication-status

Published

pubs.volume

24

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1511.06724v1.pdf
Size:
435.76 KB
Format:
Adobe Portable Document Format